Classical variational optimization of PREPARE circuit for quantum phase
estimation of quantum chemistry Hamiltonians
- URL: http://arxiv.org/abs/2308.13770v1
- Date: Sat, 26 Aug 2023 05:32:38 GMT
- Title: Classical variational optimization of PREPARE circuit for quantum phase
estimation of quantum chemistry Hamiltonians
- Authors: Hayata Morisaki, Kosuke Mitarai, Keisuke Fujii, Yuya O. Nakagawa
- Abstract summary: We propose a method for constructing $textttPREPARE$ circuits for quantum phase estimation of a molecular Hamiltonian in quantum chemistry.
The $textttPREPARE$ circuit generates a quantum state which encodes the coefficients of the terms in the Hamiltonian as probability amplitudes.
- Score: 0.8009842832476994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for constructing $\texttt{PREPARE}$ circuits for quantum
phase estimation of a molecular Hamiltonian in quantum chemistry by using
variational optimization of quantum circuits solely on classical computers. The
$\texttt{PREPARE}$ circuit generates a quantum state which encodes the
coefficients of the terms in the Hamiltonian as probability amplitudes and
plays a crucial role in the state-of-the-art efficient implementations of
quantum phase estimation. We employ the automatic quantum circuit encoding
algorithm [Shirakawa $\textit{et al.}$, arXiv:2112.14524] to construct
$\texttt{PREPARE}$ circuits, which requires classical simulations of quantum
circuits of $O(\log N)$ qubits with $N$ being the number of qubits of the
Hamiltonian. The generated $\texttt{PREPARE}$ circuits do not need any
ancillary qubit. We demonstrate our method by investigating the number of
$T$-gates of the obtained $\texttt{PREPARE}$ circuits for quantum chemistry
Hamiltonians of various molecules, which shows a constant-factor reduction
compared to previous approaches that do not use ancillary qubits. Since the
number of available logical qubits and $T$ gates will be limited at the early
stage of the fault-tolerant quantum computing, the proposed method is
particularly of use for performing the quantum phase estimation with such
limited capability.
Related papers
- Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Scalable quantum circuits for exponential of Pauli strings and Hamiltonian simulations [0.0]
We design quantum circuits for the exponential of scaled $n$-qubit Pauli strings using single-qubit rotation gates, Hadamard gate, and CNOT gates.
A key result we derive is that any two Pauli-string operators composed of identity and $X$ gates are permutation similar.
We apply these circuit models to approximate unitary evolution for several classes of Hamiltonians using the Suzuki-Trotter approximation.
arXiv Detail & Related papers (2024-05-22T12:57:09Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Variational-quantum-eigensolver-inspired optimization for spin-chain work extraction [39.58317527488534]
Energy extraction from quantum sources is a key task to develop new quantum devices such as quantum batteries.
One of the main issues to fully extract energy from the quantum source is the assumption that any unitary operation can be done on the system.
We propose an approach to optimize the extractable energy inspired by the variational quantum eigensolver (VQE) algorithm.
arXiv Detail & Related papers (2023-10-11T15:59:54Z) - Shallow quantum circuits for efficient preparation of Slater
determinants and correlated states on a quantum computer [0.0]
Fermionic ansatz state preparation is a critical subroutine in many quantum algorithms such as Variational Quantum Eigensolver for quantum chemistry and condensed matter applications.
Inspired by data-loading circuits developed for quantum machine learning, we propose an alternate paradigm that provides shallower, yet scalable $mathcalO(d log2N)$ two-qubit gate depth circuits to prepare such states with d-fermions.
arXiv Detail & Related papers (2023-01-18T12:43:18Z) - Quantum algorithms for estimating quantum entropies [6.211541620389987]
We propose quantum algorithms to estimate the von Neumann and quantum $alpha$-R'enyi entropies of an fundamental quantum state.
We also show how to efficiently construct the quantum entropy circuits for quantum entropy estimation using single copies of the input state.
arXiv Detail & Related papers (2022-03-04T15:44:24Z) - Automatic quantum circuit encoding of a given arbitrary quantum state [0.0]
We propose a quantum-classical hybrid algorithm to encode a given arbitrarily quantum state onto an optimal quantum circuit.
The proposed algorithm employs as an objective function the absolute value of fidelity $F = langle 0 vert hatmathcalCdagger vert Psi rangle$.
We experimentally demonstrate that a quantum circuit generated by the AQCE algorithm can indeed represent the original quantum state reasonably on a noisy real quantum device.
arXiv Detail & Related papers (2021-12-29T12:33:41Z) - Halving the cost of quantum multiplexed rotations [0.0]
We improve the number of $T$ gates needed for a $b$-bit approximation of a multiplexed quantum gate with $c$ controls.
Our results roughly halve the cost of state-of-art electronic structure simulations based on qubitization of double-factorized or tensor-hypercontracted representations.
arXiv Detail & Related papers (2021-10-26T06:49:44Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.