Shallow quantum circuits for efficient preparation of Slater
determinants and correlated states on a quantum computer
- URL: http://arxiv.org/abs/2301.07477v5
- Date: Wed, 26 Jul 2023 04:07:55 GMT
- Title: Shallow quantum circuits for efficient preparation of Slater
determinants and correlated states on a quantum computer
- Authors: Chong Hian Chee, Daniel Leykam, Adrian M. Mak, Dimitris G. Angelakis
- Abstract summary: Fermionic ansatz state preparation is a critical subroutine in many quantum algorithms such as Variational Quantum Eigensolver for quantum chemistry and condensed matter applications.
Inspired by data-loading circuits developed for quantum machine learning, we propose an alternate paradigm that provides shallower, yet scalable $mathcalO(d log2N)$ two-qubit gate depth circuits to prepare such states with d-fermions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fermionic ansatz state preparation is a critical subroutine in many quantum
algorithms such as Variational Quantum Eigensolver for quantum chemistry and
condensed matter applications. The shallowest circuit depth needed to prepare
Slater determinants and correlated states to date scale at least linearly with
respect to the system size $N$. Inspired by data-loading circuits developed for
quantum machine learning, we propose an alternate paradigm that provides
shallower, yet scalable ${\mathcal{O}}(d \log_2^2N)$ two-qubit gate depth
circuits to prepare such states with d-fermions, offering a subexponential
reduction in $N$ over existing approaches in second quantization, enabling
high-accuracy studies of $d{\ll}{\mathcal{O}}{\left(N / \log_2^2 N\right)}$
fermionic systems with larger basis sets on near-term quantum devices.
Related papers
- Spin coupling is all you need: Encoding strong electron correlation on quantum computers [0.0]
We show that quantum computers can efficiently simulate strongly correlated molecular systems by directly encoding the dominant entanglement structure in the form of spin-coupled initial states.
Our work paves the way towards scalable quantum simulation of electronic structure for classically challenging systems.
arXiv Detail & Related papers (2024-04-29T17:14:21Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Classical variational optimization of PREPARE circuit for quantum phase
estimation of quantum chemistry Hamiltonians [0.8009842832476994]
We propose a method for constructing $textttPREPARE$ circuits for quantum phase estimation of a molecular Hamiltonian in quantum chemistry.
The $textttPREPARE$ circuit generates a quantum state which encodes the coefficients of the terms in the Hamiltonian as probability amplitudes.
arXiv Detail & Related papers (2023-08-26T05:32:38Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
Quantum machine learning is emerging as a dominant paradigm to program gate-based quantum computers.
This book provides a self-contained introduction to quantum machine learning for an audience of engineers with a background in probability and linear algebra.
arXiv Detail & Related papers (2022-05-11T12:10:52Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Quantum State Preparation with Optimal Circuit Depth: Implementations
and Applications [10.436969366019015]
We show that any $Theta(n)$-depth circuit can be prepared with a $Theta(log(nd)) with $O(ndlog d)$ ancillary qubits.
We discuss applications of the results in different quantum computing tasks, such as Hamiltonian simulation, solving linear systems of equations, and realizing quantum random access memories.
arXiv Detail & Related papers (2022-01-27T13:16:30Z) - Configurable sublinear circuits for quantum state preparation [1.9279780052245203]
We show a configuration that encodes an $N$-dimensional state by a quantum circuit with $O(sqrtN)$ width and depth and entangled information in ancillary qubits.
We show a proof-of-principle on five quantum computers and compare the results.
arXiv Detail & Related papers (2021-08-23T13:52:43Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Automatically Differentiable Quantum Circuit for Many-qubit State
Preparation [1.5662820454886202]
We propose the automatically differentiable quantum circuit (ADQC) approach to efficiently prepare arbitrary quantum many-qubit states.
The circuit is optimized by updating the latent gates using back propagation to minimize the distance between the evolved and target states.
Our work sheds light on the "intelligent construction" of quantum circuits for many-qubit systems by combining with the machine learning methods.
arXiv Detail & Related papers (2021-04-30T12:22:26Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.