Price-Discrimination Game for Distributed Resource Management in Federated Learning
- URL: http://arxiv.org/abs/2308.13838v7
- Date: Sat, 13 Apr 2024 01:41:23 GMT
- Title: Price-Discrimination Game for Distributed Resource Management in Federated Learning
- Authors: Han Zhang, Halvin Yang, Guopeng Zhang,
- Abstract summary: In vanilla federated learning (FL) such as FedAvg, the parameter server (PS) and multiple distributed clients can form a typical buyer's market.
This paper proposes to differentiate the pricing for services provided by different clients rather than simply providing the same service pricing for different clients.
- Score: 3.724337025141794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In vanilla federated learning (FL) such as FedAvg, the parameter server (PS) and multiple distributed clients can form a typical buyer's market, where the number of PS/buyers of FL services is far less than the number of clients/sellers. In order to improve the performance of FL and reduce the cost of motivating clients to participate in FL, this paper proposes to differentiate the pricing for services provided by different clients rather than simply providing the same service pricing for different clients. The price is differentiated based on the performance improvements brought to FL and their heterogeneity in computing and communication capabilities. To this end, a price-discrimination game (PDG) is formulated to comprehensively address the distributed resource management problems in FL, including multi-objective trade-off, client selection, and incentive mechanism. As the PDG is a mixed-integer nonlinear programming (MINLP) problem, a distributed semi-heuristic algorithm with low computational complexity and low communication overhead is designed to solve it. The simulation result verifies the effectiveness of the proposed approach.
Related papers
- Client Orchestration and Cost-Efficient Joint Optimization for
NOMA-Enabled Hierarchical Federated Learning [55.49099125128281]
We propose a non-orthogonal multiple access (NOMA) enabled HFL system under semi-synchronous cloud model aggregation.
We show that the proposed scheme outperforms the considered benchmarks regarding HFL performance improvement and total cost reduction.
arXiv Detail & Related papers (2023-11-03T13:34:44Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
This paper presents a novel split federated learning (SFL) framework that pairs clients with different computational resources.
A greedy algorithm is proposed by reconstructing the optimization of training latency as a graph edge selection problem.
Simulation results show the proposed method can significantly improve the FL training speed and achieve high performance.
arXiv Detail & Related papers (2023-08-26T11:10:54Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
We propose a primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model.
Experiments based on (semi-supervised) image classification tasks demonstrate superiority of FedVRA over the existing schemes.
arXiv Detail & Related papers (2022-12-03T03:27:51Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
Federated learning aims to train predictive models for data that is distributed across clients, under the orchestration of a server.
We propose FL GAMES, a game-theoretic framework for federated learning that learns causal features that are invariant across clients.
arXiv Detail & Related papers (2022-10-31T22:59:03Z) - A-LAQ: Adaptive Lazily Aggregated Quantized Gradient [11.990047476303252]
Federated Learning (FL) plays a prominent role in solving machine learning problems with data distributed across clients.
In FL, to reduce the communication overhead of data between clients and the server, each client communicates the local FL parameters instead of the local data.
This paper proposes Adaptive Lazily Aggregated Quantized Gradient (A-LAQ), which significantly extends LAQ by assigning an adaptive number of communication bits during the FL iterations.
arXiv Detail & Related papers (2022-10-31T16:59:58Z) - Learning-Based Client Selection for Federated Learning Services Over
Wireless Networks with Constrained Monetary Budgets [8.285974405319735]
We investigate a data quality-aware dynamic client selection problem for multiple federated learning (FL) services in a wireless network.
A multi-agent hybrid deep reinforcement learning-based algorithm is proposed to optimize the joint client selection and payment actions.
arXiv Detail & Related papers (2022-08-08T06:00:07Z) - Combating Client Dropout in Federated Learning via Friend Model
Substitution [8.325089307976654]
Federated learning (FL) is a new distributed machine learning framework known for its benefits on data privacy and communication efficiency.
This paper studies a passive partial client participation scenario that is much less well understood.
We develop a new algorithm FL-FDMS that discovers friends of clients whose data distributions are similar.
Experiments on MNIST and CIFAR-10 confirmed the superior performance of FL-FDMS in handling client dropout in FL.
arXiv Detail & Related papers (2022-05-26T08:34:28Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z) - A Contract Theory based Incentive Mechanism for Federated Learning [52.24418084256517]
Federated learning (FL) serves as a data privacy-preserved machine learning paradigm, and realizes the collaborative model trained by distributed clients.
To accomplish an FL task, the task publisher needs to pay financial incentives to the FL server and FL server offloads the task to the contributing FL clients.
It is challenging to design proper incentives for the FL clients due to the fact that the task is privately trained by the clients.
arXiv Detail & Related papers (2021-08-12T07:30:42Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.