論文の概要: Memory-aware Scheduling for Complex Wired Networks with Iterative Graph
Optimization
- arxiv url: http://arxiv.org/abs/2308.13898v1
- Date: Sat, 26 Aug 2023 14:52:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-29 18:17:34.030623
- Title: Memory-aware Scheduling for Complex Wired Networks with Iterative Graph
Optimization
- Title(参考訳): 反復グラフ最適化を用いた複雑なWiredネットワークのメモリアウェアスケジューリング
- Authors: Shuzhang Zhong, Meng Li, Yun Liang, Runsheng Wang, Ru Huang
- Abstract要約: 本稿では,反復グラフ最適化に基づく効率的なメモリ認識スケジューリングフレームワークを提案する。
我々のフレームワークは、スケジューリングの最適性を保ちながらグラフを単純化する反復グラフ融合アルゴリズムを備えている。
- 参考スコア(独自算出の注目度): 4.614780125575351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Memory-aware network scheduling is becoming increasingly important for deep
neural network (DNN) inference on resource-constrained devices. However, due to
the complex cell-level and network-level topologies, memory-aware scheduling
becomes very challenging. While previous algorithms all suffer from poor
scalability, in this paper, we propose an efficient memory-aware scheduling
framework based on iterative computation graph optimization. Our framework
features an iterative graph fusion algorithm that simplifies the computation
graph while preserving the scheduling optimality. We further propose an integer
linear programming formulation together with topology-aware variable pruning to
schedule the simplified graph efficiently. We evaluate our method against
prior-art algorithms on different networks and demonstrate that our method
outperforms existing techniques in all the benchmarks, reducing the peak memory
footprint by 13.4%, and achieving better scalability for networks with complex
network-level topologies.
- Abstract(参考訳): リソース制約のあるデバイス上でのディープニューラルネットワーク(DNN)推論では、メモリ対応ネットワークスケジューリングがますます重要になっている。
しかし、複雑なセルレベルとネットワークレベルのトポロジのため、メモリアウェアスケジューリングは非常に困難である。
従来のアルゴリズムはすべてスケーラビリティの低下に悩まされていたが,本論文では反復計算グラフ最適化に基づく効率的なメモリ認識スケジューリングフレームワークを提案する。
本フレームワークは,スケジューリングの最適性を維持しつつ計算グラフを単純化する反復グラフ融合アルゴリズムを特徴とする。
さらに,合成グラフを効率的にスケジュールするために,トポロジ対応変数プルーニングとともに整数線形計画法を提案する。
提案手法は,様々なネットワーク上の先行技術アルゴリズムに対して評価を行い,既存の手法を全ベンチマークで上回り,最大メモリフットプリントを13.4%削減し,複雑なネットワークレベルトポロジを持つネットワークのスケーラビリティ向上を実証する。
関連論文リスト
- Efficient Message Passing Architecture for GCN Training on HBM-based FPGAs with Orthogonal Topology On-Chip Networks [0.0]
グラフ畳み込みネットワーク(GCN)は、グラフ上の表現学習のための最先端のディープラーニングモデルである。
NUMAベースのメモリアクセス特性を利用したメッセージパッシングアーキテクチャを提案する。
また,提案アクセラレータ内でGCN特有のバックプロパゲーションアルゴリズムを再設計した。
論文 参考訳(メタデータ) (2024-11-06T12:00:51Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAEはグラフオートエンコーダフレームワークで、GNNの転送性と安定性を活用して、再トレーニングなしに効率的なネットワークアライメントを実現する。
実験の結果、T-GAEは最先端の最適化手法と最高のGNN手法を最大38.7%、50.8%で上回っていることがわかった。
論文 参考訳(メタデータ) (2023-10-05T02:58:29Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
トレンドは、パラメータが増加するより深い、より大きなニューラルネットワークが、より小さなニューラルネットワークよりも高い精度を達成することを示している。
ネットワーク拡張, プルーニング, サブネットワーク崩壊, 削除のためのアルゴリズムを用いて, 構造化プルーニングを一般化する。
結果のCNNは計算コストのかかるスパース行列演算を使わずにGPUハードウェア上で効率的に実行される。
論文 参考訳(メタデータ) (2023-08-28T14:19:13Z) - RESPECT: Reinforcement Learning based Edge Scheduling on Pipelined Coral
Edge TPUs [12.952987240366781]
本研究は、最適化アルゴリズムの挙動を学習する強化学習(RL)に基づくスケジューリングフレームワークを提案する。
RLは、実行時のオーバーヘッドを短くすることで、ほぼ最適のスケジューリング結果を生成する。
我々のフレームワークは、商用コンパイラ上での実世界のオンチップランタイム推論速度アップを最大$sim2.5times$で実証しています。
論文 参考訳(メタデータ) (2023-04-10T17:22:12Z) - Scalable Graph Convolutional Network Training on Distributed-Memory
Systems [5.169989177779801]
グラフ畳み込みネットワーク(GCN)はグラフの深層学習に広く利用されている。
グラフ上の畳み込み操作は不規則なメモリアクセスパターンを誘導するので、GCNトレーニングのためのメモリと通信効率の並列アルゴリズムを設計することはユニークな課題である。
本稿では,大規模プロセッサ数にスケールする並列トレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-09T17:51:13Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
埋め込みによるグラフリファインメントクラスタリングネットワーク (EGRC-Net) という新しいグラフクラスタリングネットワークを提案する。
EGRC-Netは学習した埋め込みを利用して初期グラフを適応的に洗練し、クラスタリング性能を向上させる。
提案手法はいくつかの最先端手法より一貫して優れている。
論文 参考訳(メタデータ) (2022-11-19T09:08:43Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural
Networks for Edge Devices [10.876317610988059]
我々は、SERENITYと呼ばれるメモリ認識コンパイラを提案し、最適なメモリフットプリントでスケジュールを見つけるシーケンスを見つける。
私たちのソリューションは、最適値を超えたさらなる削減を可能にするグラフ書き換え技術も備えています。
論文 参考訳(メタデータ) (2020-03-04T23:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。