Improve in-situ life prediction and classification performance by
capturing both the present state and evolution rate of battery aging
- URL: http://arxiv.org/abs/2308.13996v1
- Date: Sun, 27 Aug 2023 03:24:37 GMT
- Title: Improve in-situ life prediction and classification performance by
capturing both the present state and evolution rate of battery aging
- Authors: Mingyuan Zhao, Yongzhi Zhang
- Abstract summary: This study develops a methodology by capturing both the battery aging state and degradation rate for improved life prediction performance.
The aging state is indicated by six physical features of an equivalent circuit model that are extracted from the voltage relaxation data.
And the degradation rate is captured by two features extracted from the differences between the voltage relaxation curves within a moving window.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study develops a methodology by capturing both the battery aging state
and degradation rate for improved life prediction performance. The aging state
is indicated by six physical features of an equivalent circuit model that are
extracted from the voltage relaxation data. And the degradation rate is
captured by two features extracted from the differences between the voltage
relaxation curves within a moving window (for life prediction), or the
differences between the capacity vs. voltage curves at different cycles (for
life classification). Two machine learning models, which are constructed based
on Gaussian Processes, are used to describe the relationships between these
physical features and battery lifetimes for the life prediction and
classification, respectively. The methodology is validated with the aging data
of 74 battery cells of three different types. Experimental results show that
based on only 3-12 minutes' sampling data, the method with novel features
predicts accurate battery lifetimes, with the prediction accuracy improved by
up to 67.09% compared with the benchmark method. And the batteries are
classified into three groups (long, medium, and short) with an overall accuracy
larger than 90% based on only two adjacent cycles' information, enabling the
highly efficient regrouping of retired batteries.
Related papers
- BatSort: Enhanced Battery Classification with Transfer Learning for Battery Sorting and Recycling [42.453194049264646]
We introduce a machine learning-based approach for battery-type classification and address the problem of data scarcity for the application.
We propose BatSort which applies transfer learning to utilize the existing knowledge optimized with large-scale datasets.
We conducted an experimental study and the results show that BatSort can achieve outstanding accuracy of 92.1% on average and up to 96.2%.
arXiv Detail & Related papers (2024-04-08T18:05:24Z) - Cerberus: A Deep Learning Hybrid Model for Lithium-Ion Battery Aging
Estimation and Prediction Based on Relaxation Voltage Curves [7.07637687957493]
This paper proposes a hybrid model for capacity aging estimation and prediction based on deep learning.
Our approach is validated against a novel dataset involving charge and discharge cycles at varying rates.
arXiv Detail & Related papers (2023-08-15T15:07:32Z) - Predicting Battery Lifetime Under Varying Usage Conditions from Early
Aging Data [3.739266290083215]
We use capacity-voltage data in early life to predict the lifetime of cells cycled under widely varying charge rates, discharge rates, and depths of discharge.
Our approach highlights the importance of using domain knowledge of lithium-ion battery degradation modes to inform feature engineering.
arXiv Detail & Related papers (2023-07-17T10:42:21Z) - Bayesian hierarchical modelling for battery lifetime early prediction [1.84926694477846]
A hierarchical Bayesian linear model is proposed for battery life prediction.
It combines both individual cell features (reflecting manufacturing variability) with population-wide features (reflecting the impact of cycling conditions on the population average)
The model is able to predict end of life with a root mean square error of 3.2 days and mean absolute percentage error of 8.6%, measured through 5-fold cross-validation.
arXiv Detail & Related papers (2022-11-10T17:02:39Z) - Training Strategies for Improved Lip-reading [61.661446956793604]
We investigate the performance of state-of-the-art data augmentation approaches, temporal models and other training strategies.
A combination of all the methods results in a classification accuracy of 93.4%, which is an absolute improvement of 4.6% over the current state-of-the-art performance.
An error analysis of the various training strategies reveals that the performance improves by increasing the classification accuracy of hard-to-recognise words.
arXiv Detail & Related papers (2022-09-03T09:38:11Z) - ERNIE-SPARSE: Learning Hierarchical Efficient Transformer Through
Regularized Self-Attention [48.697458429460184]
Two factors, information bottleneck sensitivity and inconsistency between different attention topologies, could affect the performance of the Sparse Transformer.
This paper proposes a well-designed model named ERNIE-Sparse.
It consists of two distinctive parts: (i) Hierarchical Sparse Transformer (HST) to sequentially unify local and global information, and (ii) Self-Attention Regularization (SAR) to minimize the distance for transformers with different attention topologies.
arXiv Detail & Related papers (2022-03-23T08:47:01Z) - Evaluating feasibility of batteries for second-life applications using
machine learning [0.0]
This paper presents a combination of machine learning techniques to enable prompt evaluation of retired electric vehicle batteries.
The proposed algorithm generates features from available battery current and voltage measurements with simple statistics.
It selects and ranks the features using correlation analysis, and employs Gaussian Process Regression enhanced with bagging.
arXiv Detail & Related papers (2022-03-08T18:07:33Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Simple statistical models and sequential deep learning for Lithium-ion
batteries degradation under dynamic conditions: Fractional Polynomials vs
Neural Networks [1.8899300124593648]
Longevity and safety of Lithium-ion batteries are facilitated by efficient monitoring and adjustment of the battery operating conditions.
It is crucial to implement fast and accurate algorithms for State of Health (SoH) monitoring on the Battery Management System.
This paper proposes and compares two data-driven approaches: a Long Short-Term Memory neural network, and a Multivariable Fractional Polynomial regression.
arXiv Detail & Related papers (2021-02-16T12:26:23Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.