Interpretable cancer cell detection with phonon microscopy using multi-task conditional neural networks for inter-batch calibration
- URL: http://arxiv.org/abs/2403.17992v1
- Date: Tue, 26 Mar 2024 12:20:10 GMT
- Title: Interpretable cancer cell detection with phonon microscopy using multi-task conditional neural networks for inter-batch calibration
- Authors: Yijie Zheng, Rafael Fuentes-Dominguez, Matt Clark, George S. D. Gordon, Fernando Perez-Cota,
- Abstract summary: We present a conditional neural network framework to simultaneously achieve inter-batch calibration.
We validate our approach by training and validating on different experimental batches.
We extend our model to reconstruct denoised signals, enabling physical interpretation of salient features indicating disease state.
- Score: 39.759100498329275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in artificial intelligence (AI) show great potential in revealing underlying information from phonon microscopy (high-frequency ultrasound) data to identify cancerous cells. However, this technology suffers from the 'batch effect' that comes from unavoidable technical variations between each experiment, creating confounding variables that the AI model may inadvertently learn. We therefore present a multi-task conditional neural network framework to simultaneously achieve inter-batch calibration, by removing confounding variables, and accurate cell classification of time-resolved phonon-derived signals. We validate our approach by training and validating on different experimental batches, achieving a balanced precision of 89.22% and an average cross-validated precision of 89.07% for classifying background, healthy and cancerous regions. Classification can be performed in 0.5 seconds with only simple prior batch information required for multiple batch corrections. Further, we extend our model to reconstruct denoised signals, enabling physical interpretation of salient features indicating disease state including sound velocity, sound attenuation and cell-adhesion to substrate.
Related papers
- Mixed Effects Deep Learning for the interpretable analysis of single cell RNA sequencing data by quantifying and visualizing batch effects [6.596656267996196]
Single-cell RNA sequencing (scRNA-seq) data are often confounded by technical or biological batch effects.
Existing deep learning models mitigate these effects but often discard batch-specific information.
We propose a Mixed Effects Deep Learning (MEDL) autoencoder framework that separately models batch-invariant (fixed effects) and batch-specific (random effects) components.
arXiv Detail & Related papers (2024-11-11T00:10:48Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Lightweight Convolution Transformer for Cross-patient Seizure Detection
in Multi-channel EEG Signals [0.0]
This study proposes a novel deep learning architecture based lightweight convolution transformer (LCT)
The transformer is able to learn spatial and temporal correlated information simultaneously from the multi-channel electroencephalogram (EEG) signal to detect seizures at smaller segment lengths.
arXiv Detail & Related papers (2023-05-07T16:43:52Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
In-vitro tests are an alternative to animal testing for the toxicity of medical devices.
Human fatigue plays a role in error making, making the use of deep learning appealing.
We propose Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI)
Our method successfully provides an adaptive early learning correction technique for object detection.
arXiv Detail & Related papers (2022-08-05T18:52:20Z) - Improving the diagnosis of breast cancer based on biophysical ultrasound
features utilizing machine learning [0.0]
We propose a biophysical feature based machine learning method for breast cancer detection.
The overall accuracy for the most common types and sizes of breast lesions in our study exceeded 98.0% for classification and 0.98 for an area under the receiver operating characteristic curve.
arXiv Detail & Related papers (2022-07-13T23:53:09Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Machine learning based lens-free imaging technique for field-portable
cytometry [0.0]
The performance of our proposed method shows an increase in accuracy >98% along with the signal enhancement of >5 dB for most of the cell types.
The model is adaptive to learn new type of samples within a few learning iterations and able to successfully classify the newly introduced sample.
arXiv Detail & Related papers (2022-03-02T07:09:29Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - No Surprises: Training Robust Lung Nodule Detection for Low-Dose CT
Scans by Augmenting with Adversarial Attacks [18.369871933983706]
Using computer vision techniques to detect nodules can improve the sensitivity and the speed of interpreting chest CT for lung cancer screening.
Many studies have used CNNs to detect nodule candidates.
CNNs are also known to be limited to generalize on under-represented samples in the training set and prone to imperceptible noise perturbations.
arXiv Detail & Related papers (2020-03-08T18:32:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.