Calibrating Panoramic Depth Estimation for Practical Localization and
Mapping
- URL: http://arxiv.org/abs/2308.14005v2
- Date: Fri, 2 Feb 2024 09:46:22 GMT
- Title: Calibrating Panoramic Depth Estimation for Practical Localization and
Mapping
- Authors: Junho Kim, Eun Sun Lee, Young Min Kim
- Abstract summary: The absolute depth values of surrounding environments provide crucial cues for various assistive technologies, such as localization, navigation, and 3D structure estimation.
We propose that accurate depth estimated from panoramic images can serve as a powerful and light-weight input for a wide range of downstream tasks requiring 3D information.
- Score: 20.621442016969976
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The absolute depth values of surrounding environments provide crucial cues
for various assistive technologies, such as localization, navigation, and 3D
structure estimation. We propose that accurate depth estimated from panoramic
images can serve as a powerful and light-weight input for a wide range of
downstream tasks requiring 3D information. While panoramic images can easily
capture the surrounding context from commodity devices, the estimated depth
shares the limitations of conventional image-based depth estimation; the
performance deteriorates under large domain shifts and the absolute values are
still ambiguous to infer from 2D observations. By taking advantage of the
holistic view, we mitigate such effects in a self-supervised way and fine-tune
the network with geometric consistency during the test phase. Specifically, we
construct a 3D point cloud from the current depth prediction and project the
point cloud at various viewpoints or apply stretches on the current input image
to generate synthetic panoramas. Then we minimize the discrepancy of the 3D
structure estimated from synthetic images without collecting additional data.
We empirically evaluate our method in robot navigation and map-free
localization where our method shows large performance enhancements. Our
calibration method can therefore widen the applicability under various external
conditions, serving as a key component for practical panorama-based machine
vision systems. Code is available through the following link:
\url{https://github.com/82magnolia/panoramic-depth-calibration}.
Related papers
- Refinement of Monocular Depth Maps via Multi-View Differentiable Rendering [4.717325308876748]
We present a novel approach to generate view consistent and detailed depth maps from a number of posed images.
We leverage advances in monocular depth estimation, which generate topologically complete, but metrically inaccurate depth maps.
Our method is able to generate dense, detailed, high-quality depth maps, also in challenging indoor scenarios, and outperforms state-of-the-art depth reconstruction approaches.
arXiv Detail & Related papers (2024-10-04T18:50:28Z) - Incorporating dense metric depth into neural 3D representations for view synthesis and relighting [25.028859317188395]
In robotic applications, dense metric depth can often be measured directly using stereo and illumination can be controlled.
In this work we demonstrate a method to incorporate dense metric depth into the training of neural 3D representations.
We also discuss a multi-flash stereo camera system developed to capture the necessary data for our pipeline and show results on relighting and view synthesis.
arXiv Detail & Related papers (2024-09-04T20:21:13Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.
Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - MSI-NeRF: Linking Omni-Depth with View Synthesis through Multi-Sphere Image aided Generalizable Neural Radiance Field [1.3162012586770577]
We introduce MSI-NeRF, which combines deep learning omnidirectional depth estimation and novel view synthesis.
We construct a multi-sphere image as a cost volume through feature extraction and warping of the input images.
Our network has the generalization ability to reconstruct unknown scenes efficiently using only four images.
arXiv Detail & Related papers (2024-03-16T07:26:50Z) - Semi-Perspective Decoupled Heatmaps for 3D Robot Pose Estimation from
Depth Maps [66.24554680709417]
Knowing the exact 3D location of workers and robots in a collaborative environment enables several real applications.
We propose a non-invasive framework based on depth devices and deep neural networks to estimate the 3D pose of robots from an external camera.
arXiv Detail & Related papers (2022-07-06T08:52:12Z) - Visual Attention-based Self-supervised Absolute Depth Estimation using
Geometric Priors in Autonomous Driving [8.045833295463094]
We introduce a fully Visual Attention-based Depth (VADepth) network, where spatial attention and channel attention are applied to all stages.
By continuously extracting the dependencies of features along the spatial and channel dimensions over a long distance, VADepth network can effectively preserve important details.
Experimental results on the KITTI dataset show that this architecture achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-05-18T08:01:38Z) - TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view
Stereo [55.30992853477754]
We present TANDEM, a real-time monocular tracking and dense framework.
For pose estimation, TANDEM performs photometric bundle adjustment based on a sliding window of alignments.
TANDEM shows state-of-the-art real-time 3D reconstruction performance.
arXiv Detail & Related papers (2021-11-14T19:01:02Z) - Panoramic Depth Estimation via Supervised and Unsupervised Learning in
Indoor Scenes [8.48364407942494]
We introduce panoramic images to obtain larger field of view.
We improve the training process of the neural network adapted to the characteristics of panoramic images.
With a comprehensive variety of experiments, this research demonstrates the effectiveness of our schemes aiming for indoor scene perception.
arXiv Detail & Related papers (2021-08-18T09:58:44Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z) - OmniSLAM: Omnidirectional Localization and Dense Mapping for
Wide-baseline Multi-camera Systems [88.41004332322788]
We present an omnidirectional localization and dense mapping system for a wide-baseline multiview stereo setup with ultra-wide field-of-view (FOV) fisheye cameras.
For more practical and accurate reconstruction, we first introduce improved and light-weighted deep neural networks for the omnidirectional depth estimation.
We integrate our omnidirectional depth estimates into the visual odometry (VO) and add a loop closing module for global consistency.
arXiv Detail & Related papers (2020-03-18T05:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.