論文の概要: Empowering Clinicians and Democratizing Data Science: Large Language
Models Automate Machine Learning for Clinical Studies
- arxiv url: http://arxiv.org/abs/2308.14120v1
- Date: Sun, 27 Aug 2023 14:28:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-29 16:45:00.216370
- Title: Empowering Clinicians and Democratizing Data Science: Large Language
Models Automate Machine Learning for Clinical Studies
- Title(参考訳): 臨床医の力を借りてデータサイエンスを民主化する:大規模言語モデルと臨床研究のための自動機械学習
- Authors: Soroosh Tayebi Arasteh, Tianyu Han, Mahshad Lotfinia, Christiane Kuhl,
Jakob Nikolas Kather, Daniel Truhn, Sven Nebelung
- Abstract要約: 機械学習開発者(例えばデータサイエンティスト)と実践者(例えば臨床医)の間には知識ギャップが持続する
GPT-4の拡張であるchatGPT Code Interpreter (CI) の可能性を検討した。
ChatGPT CIは、臨床結果を予測するために、オリジナルの研究のトレーニングデータに基づいて、最先端のMLモデルを自律的に開発した。
- 参考スコア(独自算出の注目度): 2.4889420816783963
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A knowledge gap persists between Machine Learning (ML) developers (e.g., data
scientists) and practitioners (e.g., clinicians), hampering the full
utilization of ML for clinical data analysis. We investigated the potential of
the chatGPT Code Interpreter (CI), an extension of GPT-4, to bridge this gap
and perform ML analyses efficiently. Real-world clinical datasets and study
details from large trials across various medical specialties were presented to
chatGPT CI without specific guidance. ChatGPT CI autonomously developed
state-of-the-art ML models based on the original study's training data to
predict clinical outcomes such as cancer development, cancer progression,
disease complications, or biomarkers such as pathogenic gene sequences.
Strikingly, these ML models matched or outperformed their published
counterparts. We conclude that chatGPT CI offers a promising avenue to
democratize ML in medicine, making advanced analytics accessible to non-ML
experts and promoting broader applications in medical research and practice.
- Abstract(参考訳): 機械学習(ML)開発者(データサイエンティストなど)と実践者(臨床医など)の間には知識ギャップが持続し、臨床データ分析におけるMLのフル活用を妨げる。
我々は、gpt-4の拡張であるchatgptコードインタプリタ(ci)の可能性を調査し、このギャップを橋渡しし、ml解析を効率的に行う。
様々な医療専門分野にわたる大規模な臨床試験から得られた実世界の臨床データセットと研究の詳細を,具体的ガイダンスなしでchatGPT CIに提示した。
ChatGPT CIは、がんの発生、がんの進行、合併症、病原遺伝子配列などのバイオマーカーなどの臨床結果を予測するために、オリジナルの研究のトレーニングデータに基づく最先端MLモデルを自律的に開発した。
興味深いことに、これらのMLモデルは、発行したモデルにマッチするか、より優れていた。
chatGPT CIは、医学におけるMLの民主化のための有望な道であり、高度な分析を非MLの専門家に公開し、医学研究や実践における幅広い応用を促進する。
関連論文リスト
- Stronger Baseline Models -- A Key Requirement for Aligning Machine Learning Research with Clinical Utility [0.0]
機械学習モデルを高精細な臨床環境にデプロイしようとするとき、よく知られた障壁が存在する。
評価において,より強力なベースラインモデルを含むと,下流効果が重要となることを実証的に示す。
本稿では,MLモデルを臨床現場でより効果的に研究・展開するためのベストプラクティスを提案する。
論文 参考訳(メタデータ) (2024-09-18T16:38:37Z) - When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
大規模言語モデルの最後の隠れ状態からベクター表現が医療診断および予後に有効であることを示す。
我々は,異常な生理的データを表すため,ゼロショット設定の命令調整LDMに着目し,それらのユーティリティを特徴抽出器として評価する。
医学MLタスクでは生データの特徴が依然として有効であることが示唆されているが、ゼロショットLSM埋め込みは競争力のある結果を示している。
論文 参考訳(メタデータ) (2024-08-15T03:56:40Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation [0.0]
本研究では,医療用テキストに最適化された教師ありニューラルマシン翻訳モデルを開発するために,新しい"LLMs-in-the-loop"アプローチを提案する。
6つの言語での独自の平行コーパスは、科学論文、人工的に生成された臨床文書、医療文書から編纂された。
MarianMTベースのモデルは、Google Translate、DeepL、GPT-4-Turboより優れている。
論文 参考訳(メタデータ) (2024-07-16T19:32:23Z) - XAI4LLM. Let Machine Learning Models and LLMs Collaborate for Enhanced In-Context Learning in Healthcare [16.79952669254101]
多層構造プロンプトを用いたゼロショット/ファウショットインコンテキスト学習(ICL)のための新しい手法を開発した。
また、ユーザと大規模言語モデル(LLM)間の2つのコミュニケーションスタイルの有効性についても検討する。
本研究は,性別バイアスや偽陰性率などの診断精度とリスク要因を系統的に評価する。
論文 参考訳(メタデータ) (2024-05-10T06:52:44Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
オープンソースの小型マルチモーダルモデル(SMM)を訓練し、放射線学における未測定臨床ニーズに対する能力ギャップを埋める。
トレーニングのために,697万以上の画像テキストペアからなる大規模なデータセットを組み立てる。
評価のために,GPT-4に基づく実測値CheXpromptを提案する。
LlaVA-Radの推論は高速で、単一のV100 GPU上でプライベート設定で実行できる。
論文 参考訳(メタデータ) (2024-03-12T18:12:02Z) - HuatuoGPT-II, One-stage Training for Medical Adaption of LLMs [61.41790586411816]
HuatuoGPT-IIは、いくつかのベンチマークで、中国の医学領域における最先端のパフォーマンスを示している。
さらに、ChatGPTやGPT-4といったプロプライエタリなモデルよりも、特に中国伝統医学において優れています。
論文 参考訳(メタデータ) (2023-11-16T10:56:24Z) - A survey of machine learning techniques in medical applications [0.0]
医療データの指数的な成長は手動分析の能力を超え、自動データ分析と処理への関心が高まる。
人間の介入を最小限に抑えたデータから学習できるMLアルゴリズムは、医療データ分析と解釈に特に適している。
MLの大きな利点の1つは、教師あり学習に必要なラベル付きトレーニングデータを収集するコストの削減である。
論文 参考訳(メタデータ) (2023-02-26T08:43:08Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。