論文の概要: Intergrated Segmentation and Detection Models for Dentex Challenge 2023
- arxiv url: http://arxiv.org/abs/2308.14161v2
- Date: Mon, 4 Sep 2023 03:11:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 02:47:40.713753
- Title: Intergrated Segmentation and Detection Models for Dentex Challenge 2023
- Title(参考訳): デンテックスチャレンジ2023の相互分割と検出モデル
- Authors: Lanshan He, Yusheng Liu, Lisheng Wang
- Abstract要約: 深層学習の発展により、歯科用パノラマX線による疾患の自動検出は、歯科医が疾患をより効率的に診断するのに役立つ。
デンテックスチャレンジ2023(英: Dentex Challenge 2023)は、歯科用パノラマX線から異常歯を自動的に検出する競技である。
- 参考スコア(独自算出の注目度): 2.1025078609239403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dental panoramic x-rays are commonly used in dental diagnosing. With the
development of deep learning, auto detection of diseases from dental panoramic
x-rays can help dentists to diagnose diseases more efficiently.The Dentex
Challenge 2023 is a competition for automatic detection of abnormal teeth along
with their enumeration ids from dental panoramic x-rays. In this paper, we
propose a method integrating segmentation and detection models to detect
abnormal teeth as well as obtain their enumeration ids.Our codes are available
at https://github.com/xyzlancehe/DentexSegAndDet.
- Abstract(参考訳): パノラマx線は歯科診断によく用いられる。
深層学習の進展に伴い、歯科用パノラマX線による疾患の自動検出は、歯科医がより効率的に疾患を診断するのに役立つ。
本稿では,異常歯の検出と列挙IDの取得にセグメンテーションと検出モデルを統合した手法を提案し,そのコードをhttps://github.com/xyzlancehe/DentexSegAndDetで公開している。
関連論文リスト
- TSegFormer: 3D Tooth Segmentation in Intraoral Scans with Geometry
Guided Transformer [47.18526074157094]
歯科用歯冠および歯肉の詳細な3D情報を提供するために, 歯科用光学式歯内スキャナー (IOS) が広く用いられている。
既往の方法は複雑な境界においてエラーを起こしやすく、患者間で不満足な結果を示す。
マルチタスク3Dトランスフォーマアーキテクチャを用いて, 歯の局所的および大域的依存関係とIOS点群における歯肉の象牙質の両方をキャプチャするTSegFormerを提案する。
論文 参考訳(メタデータ) (2023-11-22T08:45:01Z) - A Sequential Framework for Detection and Classification of Abnormal
Teeth in Panoramic X-rays [1.8962225869778402]
本報告では,MICCAI 2023におけるパノラマX線検査における歯科審美と診断の解決策について述べる。
本手法は, 異常歯の検出・分類作業に適した多段階の枠組みから構成される。
論文 参考訳(メタデータ) (2023-08-31T13:47:01Z) - DETDet: Dual Ensemble Teeth Detection [0.0]
2023 MICCAI DENTEXは, 歯科用パノラマX線診断と列挙の精度を高めることを目的としている。
DeTDetはDual Ensemble Teeth Detection Networkである。
我々は列挙モジュールにMask-RCNN,診断モジュールにDINOを採用した。
論文 参考訳(メタデータ) (2023-08-27T11:04:26Z) - YOLOrtho -- A Unified Framework for Teeth Enumeration and Dental Disease
Detection [4.136033167469768]
YOLOrthoは歯列挙と歯科疾患検出のための統合された枠組みである。
我々は,3種類の注釈付きデータからなるDentex Challenge 2023データに基づくモデルを開発した。
このデータを十分に活用し,同時に歯の発見と疾患の同定を学習するために,本研究では,歯に付着する属性として疾患を定式化する。
論文 参考訳(メタデータ) (2023-08-11T06:54:55Z) - DENTEX: An Abnormal Tooth Detection with Dental Enumeration and
Diagnosis Benchmark for Panoramic X-rays [0.3355353735901314]
パノラマX線チャレンジ(DENTEX)の歯科治療と診断は、2023年の医用画像コンピューティングとコンピュータ支援介入国際会議(MICCAI)と連携して進められている。
完全注釈付きデータに基づいて参加者アルゴリズムの評価結果を示す。
この注釈付きデータセットの提供は、この課題の結果と共に、歯科医療の分野でAIを活用したツールを作成するための基礎となるかもしれない。
論文 参考訳(メタデータ) (2023-05-30T15:15:50Z) - Construction of unbiased dental template and parametric dental model for
precision digital dentistry [46.459289444783956]
CBCT画像から正確な歯科用アトラスを作製し, 歯のセグメンテーションを誘導するアンバイアスド歯科用テンプレートを開発した。
実際の被写体のCBCT画像159枚を収集して施工する。
論文 参考訳(メタデータ) (2023-04-07T09:39:03Z) - An Implicit Parametric Morphable Dental Model [79.29420177904022]
歯および歯茎の3次元異形性モデルとして, 第一報を提出した。
これは、各歯と歯茎のコンポーネントワイド表現と、これら各コンポーネントの学習可能な潜在コードに基づいている。
我々の復元品質は、新しいアプリケーションを実現しつつ、最も先進的なグローバルな暗黙の表現と同等です。
論文 参考訳(メタデータ) (2022-11-21T12:23:54Z) - OdontoAI: A human-in-the-loop labeled data set and an online platform to
boost research on dental panoramic radiographs [53.67409169790872]
本研究では, 歯科用パノラマX線画像の公開データセットの構築について述べる。
我々はHuman-in-the-loop(HITL)の概念の恩恵を受け、ラベリング手順を高速化する。
その結果,HITLによるラベル付け時間短縮率は51%であり,連続作業時間390時間以上節約できた。
論文 参考訳(メタデータ) (2022-03-29T18:57:23Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Two-Stage Mesh Deep Learning for Automated Tooth Segmentation and
Landmark Localization on 3D Intraoral Scans [56.55092443401416]
TS-MDLの最初の段階では、mphiMeshSegNetは0.953pm0.076$で平均Dice類似係数(DSC)に達した。
PointNet-Reg は平均絶対誤差 (MAE) が 0.623pm0.718, mm$ であり、ランドマーク検出の他のネットワークよりも優れている。
論文 参考訳(メタデータ) (2021-09-24T13:00:26Z) - PaXNet: Dental Caries Detection in Panoramic X-ray using Ensemble
Transfer Learning and Capsule Classifier [8.164433158925593]
多くの場合、画像品質の低さなどの異なる理由から、X線を用いた歯列の識別は困難である。
そこで本研究では,パノラマ画像中の歯列を初めて検出する自動診断システムを提案する。
提案モデルは、X線から関連する特徴を抽出し、カプセルネットワークを用いて予測結果を描画するトランスファーラーニングにより、事前訓練された様々な深層学習モデルの利点を享受する。
論文 参考訳(メタデータ) (2020-12-26T03:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。