The Promise and Peril of Artificial Intelligence -- Violet Teaming
Offers a Balanced Path Forward
- URL: http://arxiv.org/abs/2308.14253v1
- Date: Mon, 28 Aug 2023 02:10:38 GMT
- Title: The Promise and Peril of Artificial Intelligence -- Violet Teaming
Offers a Balanced Path Forward
- Authors: Alexander J. Titus and Adam H. Russell
- Abstract summary: This paper reviews emerging issues with opaque and uncontrollable AI systems.
It proposes an integrative framework called violet teaming to develop reliable and responsible AI.
It emerged from AI safety research to manage risks proactively by design.
- Score: 56.16884466478886
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) promises immense benefits across sectors, yet
also poses risks from dual-use potentials, biases, and unintended behaviors.
This paper reviews emerging issues with opaque and uncontrollable AI systems
and proposes an integrative framework called violet teaming to develop reliable
and responsible AI. Violet teaming combines adversarial vulnerability probing
(red teaming) with solutions for safety and security (blue teaming) while
prioritizing ethics and social benefit. It emerged from AI safety research to
manage risks proactively by design. The paper traces the evolution of red,
blue, and purple teaming toward violet teaming, and then discusses applying
violet techniques to address biosecurity risks of AI in biotechnology.
Additional sections review key perspectives across law, ethics, cybersecurity,
macrostrategy, and industry best practices essential for operationalizing
responsible AI through holistic technical and social considerations. Violet
teaming provides both philosophy and method for steering AI trajectories toward
societal good. With conscience and wisdom, the extraordinary capabilities of AI
can enrich humanity. But without adequate precaution, the risks could prove
catastrophic. Violet teaming aims to empower moral technology for the common
welfare.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Human-AI Safety: A Descendant of Generative AI and Control Systems Safety [6.100304850888953]
We argue that meaningful safety assurances for advanced AI technologies require reasoning about how the feedback loop formed by AI outputs and human behavior may drive the interaction towards different outcomes.
We propose a concrete technical roadmap towards next-generation human-centered AI safety.
arXiv Detail & Related papers (2024-05-16T03:52:00Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - A Red Teaming Framework for Securing AI in Maritime Autonomous Systems [0.0]
We propose one of the first red team frameworks for evaluating the AI security of maritime autonomous systems.
This framework is a multi-part checklist, which can be tailored to different systems and requirements.
We demonstrate this framework to be highly effective for a red team to use to uncover numerous vulnerabilities within a real-world maritime autonomous systems AI.
arXiv Detail & Related papers (2023-12-08T14:59:07Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Potentiality and Awareness: A Position Paper from the Perspective of
Human-AI Teaming in Cybersecurity [18.324118502535775]
We argue that human-AI teaming is worthwhile in cybersecurity.
We emphasize the importance of a balanced approach that incorporates AI's computational power with human expertise.
arXiv Detail & Related papers (2023-09-28T01:20:44Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Towards a framework for understanding societal and ethical implications
of Artificial Intelligence [2.28438857884398]
The objective of this paper is to identify the main societal and ethical challenges implied by a massive uptake of AI.
We have surveyed the literature for the most common challenges and classified them in seven groups: 1) Non-desired effects, 2) Liability, 3) Unknown consequences, 4) Relation people-robots, 5) Concentration of power and wealth, 6) Intentional bad uses, and 7) AI for weapons and warfare.
arXiv Detail & Related papers (2020-01-03T17:55:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.