論文の概要: Towards solving ontological dissonance using network graphs
- arxiv url: http://arxiv.org/abs/2308.14326v1
- Date: Mon, 28 Aug 2023 06:10:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-29 15:33:10.640046
- Title: Towards solving ontological dissonance using network graphs
- Title(参考訳): ネットワークグラフを用いた存在論的不協和の解法
- Authors: Maximilian Staebler, Frank Koester, Christoph Schlueter-Langdon
- Abstract要約: 本稿では、13の異なる領域からのデータモデルを統合し、これらの領域のオントロジ的不協和を解析する。
調査の見通しは、これらの結果がドメイン間で異なるデータ空間を接続する上でどのように役立つかを説明している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data Spaces are an emerging concept for the trusted implementation of
data-based applications and business models, offering a high degree of
flexibility and sovereignty to all stakeholders. As Data Spaces are currently
emerging in different domains such as mobility, health or food, semantic
interfaces need to be identified and implemented to ensure the technical
interoperability of these Data Spaces. This paper consolidates data models from
13 different domains and analyzes the ontological dissonance of these domains.
Using a network graph, central data models and ontology attributes are
identified, while the semantic heterogeneity of these domains is described
qualitatively. The research outlook describes how these results help to connect
different Data Spaces across domains.
- Abstract(参考訳): データ空間は、データベースのアプリケーションとビジネスモデルの信頼できる実装のための新しい概念であり、すべての利害関係者に高い柔軟性と主権を提供する。
Data Spacesは現在、モビリティ、ヘルス、フードなどさまざまな領域で登場しているため、これらのData Spacesの技術的相互運用性を保証するためにセマンティックインターフェースを識別および実装する必要がある。
本論文は,13の異なる領域のデータモデルを統合し,それらの領域のオントロジ不協和を解析する。
ネットワークグラフを用いて中央データモデルとオントロジー属性を同定し、それらのドメインの意味的多様性を定性的に記述する。
調査の見通しは、これらの結果がドメイン間の異なるデータ空間の接続にどのように役立つかを説明している。
関連論文リスト
- Self-consistent Deep Geometric Learning for Heterogeneous Multi-source Spatial Point Data Prediction [10.646376827353551]
環境モニタリングや天然資源管理といった分野において,マルチソース空間データ予測が重要である。
この領域の既存のモデルはドメイン固有の性質のためにしばしば不足し、様々な情報源からの情報を統合する戦略が欠如している。
我々は,地中真理ラベルを頼らずに,様々な情報源からの情報を順に整列する,革新的なマルチソース空間点データ予測フレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-30T16:13:13Z) - Contrastive Representation for Data Filtering in Cross-Domain Offline Reinforcement Learning [46.08671291758573]
クロスドメインオフライン強化学習は、ターゲットドメインのデータ要求を軽減するために、さまざまなトランジションダイナミクスを備えたソースドメインデータを活用する。
既存の手法は、ペア化されたドメインの転送可能性の仮定に依存しながら、ドメイン分類器を介してダイナミックスギャップを測定することでこの問題に対処する。
本稿では,異なる領域からの遷移をサンプリングすることで,対照的な目的によって表現が学習される領域ギャップを測定するための新しい表現ベースアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-10T02:21:42Z) - Overcoming Data Inequality across Domains with Semi-Supervised Domain
Generalization [4.921899151930171]
本稿では,ドメイン認識型プロトタイプを用いて,ドメイン不変性を効果的に学習できる新しいアルゴリズムProUDを提案する。
3つの異なるベンチマークデータセットに対する実験により, ProUDの有効性が示された。
論文 参考訳(メタデータ) (2024-03-08T10:49:37Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
ロボット制御ジェスチャー(RoCoG-v2)と呼ばれる新しいデータセットを導入する。
データセットは7つのジェスチャークラスの実ビデオと合成ビデオの両方で構成されている。
我々は,最先端の行動認識とドメイン適応アルゴリズムを用いて結果を示す。
論文 参考訳(メタデータ) (2023-03-17T23:23:55Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Deep Spatial Domain Generalization [8.102110157532556]
本研究では,空間データをグラフとして扱う空間グラフニューラルネットワークを開発し,各ノードに空間埋め込みを学習する。
提案手法は,テストフェーズ中に見つからない位置の空間埋め込みを推定し,下流タスクモデルのパラメータを目標位置に直接デコードする。
論文 参考訳(メタデータ) (2022-10-03T06:16:20Z) - FedILC: Weighted Geometric Mean and Invariant Gradient Covariance for
Federated Learning on Non-IID Data [69.0785021613868]
フェデレートラーニング(Federated Learning)とは、ローカルに計算されたパラメータの更新を、空間的に分散されたクライアントサイロからトレーニングデータに集約することで、共有サーバモデルによる学習を可能にする分散機械学習アプローチである。
本研究では, 勾配の共分散とヘッセンの幾何学的平均を利用して, シロ間およびシロ内成分の両方を捕捉するフェデレート不変学習一貫性(FedILC)アプローチを提案する。
これは医療、コンピュータビジョン、IoT(Internet of Things)といった様々な分野に関係している。
論文 参考訳(メタデータ) (2022-05-19T03:32:03Z) - Graphical Modeling for Multi-Source Domain Adaptation [56.05348879528149]
マルチソースドメイン適応(MSDA)は、複数のソースドメインからターゲットドメインへの知識の転送に焦点を当てている。
我々は2種類のグラフィカルモデルを提案する。
MSDAの条件付きランダムフィールド(CRF-MSDA)とMSDAのマルコフランダムフィールド(MRF-MSDA)
これらの2つのモデルを、ドメインシフトとデータの複雑さが異なるMSDAの4つの標準ベンチマークデータセットで評価します。
論文 参考訳(メタデータ) (2021-04-27T09:04:22Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
我々は,クロスドメイン全体的特徴共適応のための新しい逆グラフ表現適応(AGRA)フレームワークを開発した。
我々は,いくつかの一般的なベンチマークで広範囲かつ公平な評価を行い,提案したAGRAフレームワークが従来の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-03T15:00:31Z) - Learning Cross-domain Generalizable Features by Representation
Disentanglement [11.74643883335152]
ディープラーニングモデルは、異なるドメイン間で限定的な一般化性を示す。
本稿では,MIDNet(Multual-Information-based Disentangled Neural Networks)を提案する。
本手法は手書き桁データセットと胎児超音波データセットを用いて画像分類を行う。
論文 参考訳(メタデータ) (2020-02-29T17:53:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。