論文の概要: The Interstate-24 3D Dataset: a new benchmark for 3D multi-camera
vehicle tracking
- arxiv url: http://arxiv.org/abs/2308.14833v1
- Date: Mon, 28 Aug 2023 18:43:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 17:09:52.541545
- Title: The Interstate-24 3D Dataset: a new benchmark for 3D multi-camera
vehicle tracking
- Title(参考訳): Interstate-24 3D Dataset: 3Dマルチカメラ車両追跡のための新しいベンチマーク
- Authors: Derek Gloudemans, Yanbing Wang, Gracie Gumm, William Barbour, Daniel
B. Work
- Abstract要約: 本研究は,道路交通カメラの重なり合う都市州間高速道路に沿って記録された新しい映像データセットを提示し,交通監視状況下でのマルチカメラ3Dオブジェクト追跡を可能にする。
データは、少なくとも16台のカメラのビデオを含む3つのシーンから解放され、合計で57分である。
877,000個の3Dバウンディングボックスと対応するオブジェクトトラックレットは、各カメラの視野に対して完全に正確に注釈付けされ、各シーンごとに空間的かつ時間的に連続した車両軌跡セットに結合される。
- 参考スコア(独自算出の注目度): 4.799822253865053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a novel video dataset recorded from overlapping highway
traffic cameras along an urban interstate, enabling multi-camera 3D object
tracking in a traffic monitoring context. Data is released from 3 scenes
containing video from at least 16 cameras each, totaling 57 minutes in length.
877,000 3D bounding boxes and corresponding object tracklets are fully and
accurately annotated for each camera field of view and are combined into a
spatially and temporally continuous set of vehicle trajectories for each scene.
Lastly, existing algorithms are combined to benchmark a number of 3D
multi-camera tracking pipelines on the dataset, with results indicating that
the dataset is challenging due to the difficulty of matching objects traveling
at high speeds across cameras and heavy object occlusion, potentially for
hundreds of frames, during congested traffic. This work aims to enable the
development of accurate and automatic vehicle trajectory extraction algorithms,
which will play a vital role in understanding impacts of autonomous vehicle
technologies on the safety and efficiency of traffic.
- Abstract(参考訳): 本研究は,道路交通カメラの重なり合う都市州間高速道路に沿って記録された新しい映像データセットを提示し,交通監視状況下でのマルチカメラ3Dオブジェクト追跡を可能にする。
データは、少なくとも16台のカメラのビデオを含む3つのシーンから解放され、合計で57分である。
877,000の3dバウンディングボックスと対応するオブジェクトトラックレットは、カメラの視野ごとに完全に正確に注釈付けされ、各シーンの空間的および時間的連続的な車両軌跡に合成される。
最後に、既存のアルゴリズムを組み合わせることで、データセット上の複数の3dマルチカメラトラッキングパイプラインをベンチマークし、結果として、トラフィックの混雑時に、カメラを横断する高速で移動するオブジェクトと、数百フレームの可能性のある重いオブジェクトのオクルージョンとのマッチングが困難であることから、データセットが困難であることが示される。
本研究の目的は、自動運転車技術が交通の安全と効率に与える影響を理解する上で重要な役割を果たす、正確かつ自動的な車両軌道抽出アルゴリズムの開発を可能にすることである。
関連論文リスト
- MTMMC: A Large-Scale Real-World Multi-Modal Camera Tracking Benchmark [63.878793340338035]
マルチターゲットマルチカメラトラッキングは、複数のカメラからのビデオストリームを使用して個人を特定し、追跡する重要なタスクである。
このタスクの既存のデータセットは、制御されたカメラネットワーク設定内で合成または人工的に構築される。
我々は16台のマルチモーダルカメラで2つの異なる環境でキャプチャされた長いビデオシーケンスを含む実世界の大規模データセットであるMTMMCを紹介する。
論文 参考訳(メタデータ) (2024-03-29T15:08:37Z) - Vehicle Perception from Satellite [54.07157185000604]
データセットは、GTA-Vから記録された12の衛星ビデオと14の合成ビデオに基づいて構築されている。
小さなオブジェクトの検出、カウント、密度推定など、いくつかのタスクをサポートする。
128,801両は完全に注釈付けされており、各画像の車両数は0から101まで様々である。
論文 参考訳(メタデータ) (2024-02-01T15:59:16Z) - Application of 2D Homography for High Resolution Traffic Data Collection
using CCTV Cameras [9.946460710450319]
本研究では,CCTVカメラから高精細なトラフィックデータを抽出するための3段階のビデオ分析フレームワークを実装した。
このフレームワークの主要な構成要素は、オブジェクト認識、視点変換、車両軌道再構成である。
その結果, カメラ推定値間の速度偏差は10%以下で, 方向トラフィック数では+/-4.5%の誤差率を示した。
論文 参考訳(メタデータ) (2024-01-14T07:33:14Z) - So you think you can track? [37.25914081637133]
この研究は、ナッシュビル近郊の8-10車線州間高速道路の4.2マイル(4.2マイル)をカバーする234のHDカメラから同時に記録された234時間のビデオデータからなるマルチカメラ追跡データセットを導入している。
ビデオはトラフィック密度の高い期間に録画され、通常500以上のオブジェクトがシーン内に表示され、典型的なオブジェクトの長寿命は3~15分である。
現場を通過する270台の車両からのGPSトラジェクトリをビデオデータで手動で修正し、リコール指向のトラッキングメトリクスのための地上トラジェクトリのセットを提供する。
論文 参考訳(メタデータ) (2023-09-13T19:18:18Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2(AV2)は、自動運転分野の研究の知覚と予測のための3つのデータセットの集合である。
Lidarデータセットには、ラベルなしのLidar点雲とマップ整列ポーズの2万のシーケンスが含まれている。
Motion Forecastingデータセットには、各ローカルシーンにおける自動運転車と他のアクター間の興味深い、挑戦的なインタラクションのために採掘された25万のシナリオが含まれている。
論文 参考訳(メタデータ) (2023-01-02T00:36:22Z) - Synthehicle: Multi-Vehicle Multi-Camera Tracking in Virtual Cities [4.4855664250147465]
複数の車両の追跡とセグメンテーションのための大規模な合成データセットを複数重なり合うカメラビューと非重なり合うカメラビューで提示する。
データセットは17時間のラベル付きビデオ素材で構成され、64の異なる日、雨、夜のシーンで340台のカメラから記録されている。
論文 参考訳(メタデータ) (2022-08-30T11:36:07Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
理想化されたビデオストリームやキュレートされたビデオストリームの代わりに,リアルタイムで低解像度のCCTVを処理する,リアルタイムな都市規模のマルチカメラ車両追跡システムを提案する。
私たちの手法は、公共のリーダーボードで上位5人のパフォーマーにランク付けされています。
論文 参考訳(メタデータ) (2022-04-15T12:47:01Z) - Rope3D: TheRoadside Perception Dataset for Autonomous Driving and
Monocular 3D Object Detection Task [48.555440807415664]
道路沿いの知覚3Dデータセットに挑戦する最初のハイダイバーシティを提示する。
データセットは50Kイメージと、さまざまなシーンで1.5M以上の3Dオブジェクトで構成されている。
本稿では,様々なセンサや視点によって引き起こされるあいまいさを解決するために,幾何学的制約を活用することを提案する。
論文 参考訳(メタデータ) (2022-03-25T12:13:23Z) - Weakly Supervised Training of Monocular 3D Object Detectors Using Wide
Baseline Multi-view Traffic Camera Data [19.63193201107591]
交差点における車両の7DoF予測は,道路利用者間の潜在的な衝突を評価する上で重要な課題である。
交通監視カメラ用3次元物体検出装置の微調整を弱教師付きで行う手法を開発した。
提案手法は,自動運転車のデータセット上で最上位のモノクル3Dオブジェクト検出器と同等の精度で車両の7DoFの予測精度を推定する。
論文 参考訳(メタデータ) (2021-10-21T08:26:48Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。