論文の概要: Pruning Self-Attention for Zero-Shot Multi-Speaker Text-to-Speech
- arxiv url: http://arxiv.org/abs/2308.14909v1
- Date: Mon, 28 Aug 2023 21:25:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 16:39:51.406551
- Title: Pruning Self-Attention for Zero-Shot Multi-Speaker Text-to-Speech
- Title(参考訳): ゼロショット多話者テキスト音声の自己認識
- Authors: Hyungchan Yoon, Changhwan Kim, Eunwoo Song, Hyun-Wook Yoon, Hong-Goo
Kang
- Abstract要約: 本稿では,TSモデルの一般化能力を向上させるために,スパースアテンション(sparse attention)と呼ばれる変圧器の効率的なプルーニング法を提案する。
また,モデルがしきい値を自動的に学習することのできる,新しい微分可能なプルーニング手法を提案する。
- 参考スコア(独自算出の注目度): 26.533600745910437
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For personalized speech generation, a neural text-to-speech (TTS) model must
be successfully implemented with limited data from a target speaker. To this
end, the baseline TTS model needs to be amply generalized to out-of-domain data
(i.e., target speaker's speech). However, approaches to address this
out-of-domain generalization problem in TTS have yet to be thoroughly studied.
In this work, we propose an effective pruning method for a transformer known as
sparse attention, to improve the TTS model's generalization abilities. In
particular, we prune off redundant connections from self-attention layers whose
attention weights are below the threshold. To flexibly determine the pruning
strength for searching optimal degree of generalization, we also propose a new
differentiable pruning method that allows the model to automatically learn the
thresholds. Evaluations on zero-shot multi-speaker TTS verify the effectiveness
of our method in terms of voice quality and speaker similarity.
- Abstract(参考訳): パーソナライズされた音声生成には、ターゲット話者からの限られたデータで、ニューラルテキスト音声(TTS)モデルをうまく実装する必要がある。
この目的のために、ベースラインTSモデルは、ドメイン外のデータ(すなわち、ターゲット話者のスピーチ)に十分に一般化する必要がある。
しかし、TSにおける領域外一般化問題に対処するアプローチはまだ十分に研究されていない。
本研究では,TSモデルの一般化能力を向上させるために,スパースアテンション(sparse attention)と呼ばれる変圧器の効率的なプルーニング法を提案する。
特に注意重みが閾値以下である自己着脱層から冗長な接続を逸脱する。
最適一般化度を求めるためのプルーニング強度を柔軟に決定するために,モデルがしきい値を自動的に学習できる新しい微分可能なプルーニング法を提案する。
ゼロショットマルチスピーカTSの評価は,音声品質と話者類似度の観点から,本手法の有効性を検証する。
関連論文リスト
- SelectTTS: Synthesizing Anyone's Voice via Discrete Unit-Based Frame Selection [7.6732312922460055]
本稿では,対象話者から適切なフレームを選択するための新しい手法であるSelectTTSを提案し,フレームレベルの自己教師型学習(SSL)機能を用いてデコードする。
提案手法は,未知話者の話者特性を効果的に把握し,主観的および主観的の両方において,他のマルチ話者テキスト音声フレームワークに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2024-08-30T17:34:46Z) - Mega-TTS: Zero-Shot Text-to-Speech at Scale with Intrinsic Inductive
Bias [71.94109664001952]
Mega-TTSは、大規模な野生データで訓練された新しいゼロショットTSシステムである。
Mega-TTS はゼロショット TTS 音声編集や言語間 TTS タスクにおいて最先端 TTS システムを超えていることを示す。
論文 参考訳(メタデータ) (2023-06-06T08:54:49Z) - Continual Learning for On-Device Speech Recognition using Disentangled
Conformers [54.32320258055716]
本稿では,LibriVoxオーディオブックから派生した話者固有領域適応のための連続学習ベンチマークを提案する。
本稿では,DistangledCLと呼ばれる計算効率のよい連続学習アルゴリズムを提案する。
実験の結果, DisConformer モデルは一般的な ASR のベースラインよりも有意に優れていた。
論文 参考訳(メタデータ) (2022-12-02T18:58:51Z) - Any-speaker Adaptive Text-To-Speech Synthesis with Diffusion Models [65.28001444321465]
Grad-StyleSpeechは拡散モデルに基づく任意の話者適応型TSフレームワークである。
数秒の参照音声が与えられた場合、ターゲット話者の声と非常によく似た、非常に自然な音声を生成することができる。
英語のベンチマークでは、話者適応型TTSベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2022-11-17T07:17:24Z) - Residual Adapters for Few-Shot Text-to-Speech Speaker Adaptation [21.218195769245032]
本稿では,残差アダプタと呼ばれるトレーニング可能な軽量モジュールでバックボーンモデルを拡張したパラメータ効率の低い少数話者適応を提案する。
実験結果から,提案手法は完全微調整手法と比較して,競合自然性や話者類似性を実現できることが示された。
論文 参考訳(メタデータ) (2022-10-28T03:33:07Z) - AdaSpeech 4: Adaptive Text to Speech in Zero-Shot Scenarios [143.47967241972995]
高品質音声合成のためのゼロショット適応型TSシステムであるAdaSpeech 4を開発した。
話者特性を体系的にモデル化し、新しい話者の一般化を改善する。
微調整なしでは、AdaSpeech 4は複数のデータセットのベースラインよりも声質と類似性が向上する。
論文 参考訳(メタデータ) (2022-04-01T13:47:44Z) - Transfer Learning Framework for Low-Resource Text-to-Speech using a
Large-Scale Unlabeled Speech Corpus [10.158584616360669]
テキスト音声(TTS)モデルのトレーニングには,大規模テキストラベル付き音声コーパスが必要となる。
本稿では、事前学習に大量のラベルなし音声データセットを利用するTSの転送学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-29T11:26:56Z) - Speaker-Conditioned Hierarchical Modeling for Automated Speech Scoring [60.55025339250815]
本研究では、話者条件付き階層型モデリングと呼ばれる非ネイティブASSのための新しいディープラーニング手法を提案する。
本手法では, 口腔熟練度テストが候補に対して複数の応答を評価できるという事実を生かして, 候補に対して複数の応答を評価できる。これらの応答からコンテキストを抽出し, ネットワークに付加的な話者固有のコンテキストとして与えて, 特定の応答をスコアする。
論文 参考訳(メタデータ) (2021-08-30T07:00:28Z) - Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation [63.561944239071615]
StyleSpeechは、高品質な音声を合成し、新しい話者に適応する新しいTSモデルである。
SALNでは、単一音声音声からでもターゲット話者のスタイルで音声を効果的に合成する。
提案手法をMeta-StyleSpeechに拡張するには,スタイルプロトタイプで訓練された2つの識別器を導入し,エピソード訓練を行う。
論文 参考訳(メタデータ) (2021-06-06T15:34:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。