論文の概要: Reinforcement Learning for Sampling on Temporal Medical Imaging
Sequences
- arxiv url: http://arxiv.org/abs/2308.14946v1
- Date: Mon, 28 Aug 2023 23:55:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 16:20:06.987553
- Title: Reinforcement Learning for Sampling on Temporal Medical Imaging
Sequences
- Title(参考訳): 時間的医用画像系列のサンプリングのための強化学習
- Authors: Zhishen Huang
- Abstract要約: 本研究では、動的画像再構成のためのサンプリング戦略を学ぶために、ダブルディープQ-ラーニングとREINFORCEアルゴリズムを適用した。
時系列のフォーマットでデータを考察し、再構成法は事前訓練されたオートエンコーダ型ニューラルネットワークである。
本稿では,強化学習アルゴリズムが最適サンプリングパターンの発見に有効であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accelerated magnetic resonance imaging resorts to either Fourier-domain
subsampling or better reconstruction algorithms to deal with fewer measurements
while still generating medical images of high quality. Determining the optimal
sampling strategy given a fixed reconstruction protocol often has combinatorial
complexity. In this work, we apply double deep Q-learning and REINFORCE
algorithms to learn the sampling strategy for dynamic image reconstruction. We
consider the data in the format of time series, and the reconstruction method
is a pre-trained autoencoder-typed neural network. We present a proof of
concept that reinforcement learning algorithms are effective to discover the
optimal sampling pattern which underlies the pre-trained reconstructor network
(i.e., the dynamics in the environment). The code for replicating experiments
can be found at https://github.com/zhishenhuang/RLsamp.
- Abstract(参考訳): 加速された磁気共鳴イメージングは、高品質の医用画像を生成しながら、より少ない測定に対処するためにフーリエ領域サブサンプリングまたはより良い再構成アルゴリズムを利用する。
固定再構成プロトコルが与えられたときの最適なサンプリング戦略の決定は、しばしば組合せ複雑性を伴う。
本研究では,ダブルディープq学習と強化アルゴリズムを適用し,動的画像再構成のためのサンプリング戦略を学習する。
時系列の形式でデータを考察し、再構成法は事前訓練されたオートエンコーダ型ニューラルネットワークである。
本稿では,強化学習アルゴリズムが事前学習された再構成ネットワーク(環境のダイナミクス)の基盤となる最適なサンプリングパターンを発見するのに有効であることを示す。
実験を複製するためのコードはhttps://github.com/zhishenhuang/RLsampにある。
関連論文リスト
- Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
畳み込み型神経生成符号化(Conv-NGC)を開発した。
我々は、潜伏状態マップを段階的に洗練する柔軟な神経生物学的動機付けアルゴリズムを実装した。
本研究は,脳にインスパイアされたニューラル・システムによる再建と画像復調の課題に対する効果について検討する。
論文 参考訳(メタデータ) (2022-11-22T06:42:41Z) - Adaptive Local Neighborhood-based Neural Networks for MR Image
Reconstruction from Undersampled Data [7.670270099306413]
近年の研究では,少ないサンプルのk空間データから深層学習を用いたMR画像の再構成が期待されている。
そこで本研究では,ニューラルネットワークを適応的に推定された訓練セットの小さな地区に適合させることにより,再構築時に直接ディープニューラルネットワークを推定する手法を提案する。
提案手法は,大規模データセットおよび他のスキャン適応手法を用いて世界規模で訓練されたモデルと比較して,高品質な再構成を実現することを示す。
論文 参考訳(メタデータ) (2022-06-01T21:37:03Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
深層ニューラルネットワークは、アンサンプされたk空間データの再構成に応用され、再構成性能が改善されている。
本研究は,k空間サンプリング軌道を正規微分方程式(ODE)問題と考えることによって学習する新しい枠組みを提案する。
実験は、異なるシーケンスで取得された様々な生き残りデータセット(例えば、脳と膝の画像)で実施された。
論文 参考訳(メタデータ) (2022-04-05T20:28:42Z) - Convolutional Analysis Operator Learning by End-To-End Training of
Iterative Neural Networks [3.6280929178575994]
本稿では、反復ニューラルネットワークのエンドツーエンドトレーニングにより、畳み込みスペーシングフィルタを効率的に学習する方法を示す。
我々は,非カルテシアン2次元心血管MRI例に対するアプローチを検証し,得られたフィルタが,デカップリングプレトレーニングにより得られたものよりも,対応する再構成アルゴリズムに適していることを示した。
論文 参考訳(メタデータ) (2022-03-04T07:32:16Z) - A Plug-and-Play Approach to Multiparametric Quantitative MRI: Image
Reconstruction using Pre-Trained Deep Denoisers [4.910318162000904]
本稿では,先進的獲得プロセスに適応したMDFに対する反復的深層学習再構築手法を提案する。
CNNデノイザモデルは、異なるサブサンプリングパターンを持つ2つの模擬取得プロセスでテストされる。
以上の結果から, 買収方式と組織量的バイオプロパティの正確なマッピングに対する一貫した除去性能が示された。
論文 参考訳(メタデータ) (2022-02-10T09:35:25Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
画像再構成に有効な先行画像として, 奥行き画像が導入された。
その印象的な再建性にもかかわらず、学習技術や伝統的な再建技術と比べてアプローチは遅い。
計算課題に対処する2段階の学習パラダイムを開発する。
論文 参考訳(メタデータ) (2021-11-23T15:08:26Z) - Single-pass Object-adaptive Data Undersampling and Reconstruction for
MRI [6.599344783327054]
本稿では,畳み込みニューラルネットワークMNetを用いたデータ駆動型サンプリング手法を提案する。
ネットワークは、各オブジェクトに対する非常に限られた低周波k空間データを観測し、所望のアンダーサンプリングパターンを迅速に予測する。
高速MRI膝関節データセットの実験結果から,提案した学習アンダーサンプリングネットワークを用いて,4倍,8倍の加速度で物体特異的マスクを生成できることが示された。
論文 参考訳(メタデータ) (2021-11-17T16:06:06Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
本稿では,ISTAアルゴリズムの展開に基づく時空間領域におけるサブNyquistサンプルからの再構成手法を提案する。
本手法は,高品質な撮像性能を確保しつつ,配列要素数,サンプリングレート,計算時間を削減できる。
論文 参考訳(メタデータ) (2021-03-01T19:19:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。