CEFHRI: A Communication Efficient Federated Learning Framework for
Recognizing Industrial Human-Robot Interaction
- URL: http://arxiv.org/abs/2308.14965v1
- Date: Tue, 29 Aug 2023 01:34:33 GMT
- Title: CEFHRI: A Communication Efficient Federated Learning Framework for
Recognizing Industrial Human-Robot Interaction
- Authors: Umar Khalid, Hasan Iqbal, Saeed Vahidian, Jing Hua, Chen Chen
- Abstract summary: Human-robot interaction (HRI) is a rapidly growing field that encompasses social and industrial applications.
Data privacy is a crucial concern in the interaction between humans and robots, as companies need to protect sensitive data.
Federated learning (FL) offers a solution by enabling the distributed training of models without sharing raw data.
- Score: 8.568323820210686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human-robot interaction (HRI) is a rapidly growing field that encompasses
social and industrial applications. Machine learning plays a vital role in
industrial HRI by enhancing the adaptability and autonomy of robots in complex
environments. However, data privacy is a crucial concern in the interaction
between humans and robots, as companies need to protect sensitive data while
machine learning algorithms require access to large datasets. Federated
Learning (FL) offers a solution by enabling the distributed training of models
without sharing raw data. Despite extensive research on Federated learning (FL)
for tasks such as natural language processing (NLP) and image classification,
the question of how to use FL for HRI remains an open research problem. The
traditional FL approach involves transmitting large neural network parameter
matrices between the server and clients, which can lead to high communication
costs and often becomes a bottleneck in FL. This paper proposes a
communication-efficient FL framework for human-robot interaction (CEFHRI) to
address the challenges of data heterogeneity and communication costs. The
framework leverages pre-trained models and introduces a trainable
spatiotemporal adapter for video understanding tasks in HRI. Experimental
results on three human-robot interaction benchmark datasets: HRI30, InHARD, and
COIN demonstrate the superiority of CEFHRI over full fine-tuning in terms of
communication costs. The proposed methodology provides a secure and efficient
approach to HRI federated learning, particularly in industrial environments
with data privacy concerns and limited communication bandwidth. Our code is
available at
https://github.com/umarkhalidAI/CEFHRI-Efficient-Federated-Learning.
Related papers
- Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
We propose an integrated federated split learning and hyperdimensional computing framework for emerging foundation models.
This novel approach reduces communication costs, computation load, and privacy risks, making it suitable for resource-constrained edge devices in the Metaverse.
arXiv Detail & Related papers (2024-08-26T17:03:14Z) - CDFL: Efficient Federated Human Activity Recognition using Contrastive Learning and Deep Clustering [12.472038137777474]
Human Activity Recognition (HAR) is vital for the automation and intelligent identification of human actions through data from diverse sensors.
Traditional machine learning approaches by aggregating data on a central server and centralized processing are memory-intensive and raise privacy concerns.
This work proposes CDFL, an efficient federated learning framework for image-based HAR.
arXiv Detail & Related papers (2024-07-17T03:17:53Z) - NatSGD: A Dataset with Speech, Gestures, and Demonstrations for Robot
Learning in Natural Human-Robot Interaction [19.65778558341053]
Speech-gesture HRI datasets often focus on elementary tasks, like object pointing and pushing.
We introduce NatSGD, a multimodal HRI dataset encompassing human commands through speech and gestures.
We demonstrate its effectiveness in training robots to understand tasks through multimodal human commands.
arXiv Detail & Related papers (2024-03-04T18:02:41Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics
in Industrial Metaverse [49.1501082763252]
This paper presents HFEDMS for incorporating practical FL into the emerging Industrial Metaverse.
It reduces data heterogeneity through dynamic grouping and training mode conversion.
Then, it compensates for the forgotten knowledge by fusing compressed historical data semantics.
Experiments have been conducted on the streamed non-i.i.d. FEMNIST dataset using 368 simulated devices.
arXiv Detail & Related papers (2022-11-07T04:33:24Z) - Evaluation and comparison of federated learning algorithms for Human
Activity Recognition on smartphones [0.5039813366558306]
Federated Learning (FL) has been introduced as a new machine learning paradigm enhancing the use of local devices.
In this paper, we propose a new FL algorithm, termed FedDist, which can modify models during training by identifying dissimilarities between neurons among the clients.
Results have shown the ability of FedDist to adapt to heterogeneous data and the capability of FL to deal with asynchronous situations.
arXiv Detail & Related papers (2022-10-30T18:47:23Z) - Addressing Data Scarcity in Multimodal User State Recognition by
Combining Semi-Supervised and Supervised Learning [1.1688030627514532]
We present a multimodal machine learning approach for detecting dis-/agreement and confusion states in a human-robot interaction environment.
We achieve an average F1-score of 81.1% for dis-/agreement detection with a small amount of labeled data and a large unlabeled data set.
arXiv Detail & Related papers (2022-02-08T10:41:41Z) - DQRE-SCnet: A novel hybrid approach for selecting users in Federated
Learning with Deep-Q-Reinforcement Learning based on Spectral Clustering [1.174402845822043]
Machine learning models based on sensitive data in the real-world promise advances in areas ranging from medical screening to disease outbreaks, agriculture, industry, defense science, and more.
In many applications, learning participant communication rounds benefit from collecting their own private data sets, teaching detailed machine learning models on the real data, and sharing the benefits of using these models.
Due to existing privacy and security concerns, most people avoid sensitive data sharing for training. Without each user demonstrating their local data to a central server, Federated Learning allows various parties to train a machine learning algorithm on their shared data jointly.
arXiv Detail & Related papers (2021-11-07T15:14:29Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.