DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
- URL: http://arxiv.org/abs/2308.15070v3
- Date: Fri, 12 Apr 2024 05:26:59 GMT
- Title: DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
- Authors: Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Wanli Ouyang, Yu Qiao, Chao Dong,
- Abstract summary: We present DiffBIR, a general restoration pipeline that could handle different blind image restoration tasks.
DiffBIR decouples blind image restoration problem into two stages: 1) degradation removal: removing image-independent content; 2) information regeneration: generating the lost image content.
In the first stage, we use restoration modules to remove degradations and obtain high-fidelity restored results.
For the second stage, we propose IRControlNet that leverages the generative ability of latent diffusion models to generate realistic details.
- Score: 70.46245698746874
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present DiffBIR, a general restoration pipeline that could handle different blind image restoration tasks in a unified framework. DiffBIR decouples blind image restoration problem into two stages: 1) degradation removal: removing image-independent content; 2) information regeneration: generating the lost image content. Each stage is developed independently but they work seamlessly in a cascaded manner. In the first stage, we use restoration modules to remove degradations and obtain high-fidelity restored results. For the second stage, we propose IRControlNet that leverages the generative ability of latent diffusion models to generate realistic details. Specifically, IRControlNet is trained based on specially produced condition images without distracting noisy content for stable generation performance. Moreover, we design a region-adaptive restoration guidance that can modify the denoising process during inference without model re-training, allowing users to balance realness and fidelity through a tunable guidance scale. Extensive experiments have demonstrated DiffBIR's superiority over state-of-the-art approaches for blind image super-resolution, blind face restoration and blind image denoising tasks on both synthetic and real-world datasets. The code is available at https://github.com/XPixelGroup/DiffBIR.
Related papers
- Blind Image Restoration via Fast Diffusion Inversion [17.139433082780037]
Blind Image Restoration via fast Diffusion (BIRD) is a blind IR method that jointly optimize for the degradation model parameters and the restored image.
A key idea in our method is not to modify the reverse sampling, i.e., not to alter all the intermediate latents, once an initial noise is sampled.
We experimentally validate BIRD on several image restoration tasks and show that it achieves state of the art performance on all of them.
arXiv Detail & Related papers (2024-05-29T23:38:12Z) - Exposure Bracketing is All You Need for Unifying Image Restoration and Enhancement Tasks [50.822601495422916]
We propose to utilize exposure bracketing photography to unify image restoration and enhancement tasks.
Due to the difficulty in collecting real-world pairs, we suggest a solution that first pre-trains the model with synthetic paired data.
In particular, a temporally modulated recurrent network (TMRNet) and self-supervised adaptation method are proposed.
arXiv Detail & Related papers (2024-01-01T14:14:35Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination.
Among these algorithms, diffusion model (DM)-based methods have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution.
We propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task.
Reti-Diff comprises two key components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RG
arXiv Detail & Related papers (2023-11-20T09:55:06Z) - Dual-Diffusion: Dual Conditional Denoising Diffusion Probabilistic
Models for Blind Super-Resolution Reconstruction in RSIs [6.2678394285548755]
We propose a novel blind SR framework based on conditional denoising diffusion probabilistic models (DDPM)
In our work, we introduce conditional denoising diffusion probabilistic models (DDPM) from two aspects: kernel estimation progress and re-construction progress.
We construct a DDPM-based reconstructor to learning the mapping from the LR images to HR images.
arXiv Detail & Related papers (2023-05-20T11:18:38Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Invertible Rescaling Network and Its Extensions [118.72015270085535]
In this work, we propose a novel invertible framework to model the bidirectional degradation and restoration from a new perspective.
We develop invertible models to generate valid degraded images and transform the distribution of lost contents.
Then restoration is made tractable by applying the inverse transformation on the generated degraded image together with a randomly-drawn latent variable.
arXiv Detail & Related papers (2022-10-09T06:58:58Z) - SVBRDF Recovery From a Single Image With Highlights using a Pretrained
Generative Adversarial Network [25.14140648820334]
In this paper, we use an unsupervised generative adversarial neural network (GAN) to recover SVBRDFs maps with a single image as input.
For efficiency, we train the network in two stages: reusing a trained model to initialize the SVBRDFs and fine-tune it based on the input image.
Our method generates high-quality SVBRDFs maps from a single input photograph, and provides more vivid rendering results compared to previous work.
arXiv Detail & Related papers (2021-10-29T10:39:06Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.