Sequential annotations for naturally-occurring HRI: first insights
- URL: http://arxiv.org/abs/2308.15097v1
- Date: Tue, 29 Aug 2023 08:07:26 GMT
- Title: Sequential annotations for naturally-occurring HRI: first insights
- Authors: Lucien Tisserand (ICAR), Fr\'ed\'eric Armetta (SyCoSMA, LIRIS), Heike
Baldauf-Quilliatre (ICAR), Antoine Bouquin (SyCoSMA, LIRIS), Salima Hassas
(SyCoSMA, LIRIS), Mathieu Lefort (LIRIS, SyCoSMA)
- Abstract summary: We explain the methodology we developed for improving the interactions accomplished by an embedded conversational agent.
We are creating a corpus of naturally-occurring interactions that will be made available to the community.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explain the methodology we developed for improving the interactions
accomplished by an embedded conversational agent, drawing from Conversation
Analytic sequential and multimodal analysis. The use case is a Pepper robot
that is expected to inform and orient users in a library. In order to propose
and learn better interactive schema, we are creating a corpus of
naturally-occurring interactions that will be made available to the community.
To do so, we propose an annotation practice based on some theoretical
underpinnings about the use of language and multimodal resources in human-robot
interaction. CCS CONCEPTS $\bullet$ Computing methodologies $\rightarrow$
Discourse, dialogue and pragmatics; $\bullet$ Human-centered computing
$\rightarrow$ Text input; HCI theory, concepts and models; Field studies.
Related papers
- Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - Parameter-Efficient Conversational Recommender System as a Language
Processing Task [52.47087212618396]
Conversational recommender systems (CRS) aim to recommend relevant items to users by eliciting user preference through natural language conversation.
Prior work often utilizes external knowledge graphs for items' semantic information, a language model for dialogue generation, and a recommendation module for ranking relevant items.
In this paper, we represent items in natural language and formulate CRS as a natural language processing task.
arXiv Detail & Related papers (2024-01-25T14:07:34Z) - An Interleaving Semantics of the Timed Concurrent Language for
Argumentation to Model Debates and Dialogue Games [0.0]
We propose a language for modelling concurrent interaction between agents.
Such a language exploits a shared memory used by the agents to communicate and reason on the acceptability of their beliefs.
We show how it can be used to model interactions such as debates and dialogue games taking place between intelligent agents.
arXiv Detail & Related papers (2023-06-13T10:41:28Z) - Contrastive Language, Action, and State Pre-training for Robot Learning [1.1000499414131326]
We introduce a method for unifying language, action, and state information in a shared embedding space to facilitate a range of downstream tasks in robot learning.
Our method, Contrastive Language, Action, and State Pre-training (CLASP), extends the CLIP formulation by incorporating distributional learning, capturing the inherent complexities and one-to-many relationships in behaviour-text alignment.
We demonstrate the utility of our method for the following downstream tasks: zero-shot text-behaviour retrieval, captioning unseen robot behaviours, and learning a behaviour prior to language-conditioned reinforcement learning.
arXiv Detail & Related papers (2023-04-21T07:19:33Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
We propose compositional learning for holistic interaction across utterances beyond the sequential contextualization from PrLMs.
We employ domain-adaptive training strategies to help the model adapt to the dialogue domains.
Experimental results show that our method substantially boosts the strong PrLM baselines in four public benchmark datasets.
arXiv Detail & Related papers (2023-01-10T13:18:25Z) - Emotion Recognition in Conversation using Probabilistic Soft Logic [17.62924003652853]
emotion recognition in conversation (ERC) is a sub-field of emotion recognition that focuses on conversations that contain two or more utterances.
We implement our approach in a framework called Probabilistic Soft Logic (PSL), a declarative templating language.
PSL provides functionality for the incorporation of results from neural models into PSL models.
We compare our method with state-of-the-art purely neural ERC systems, and see almost a 20% improvement.
arXiv Detail & Related papers (2022-07-14T23:59:06Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
We introduce GODEL, a large pre-trained language model for dialog.
We show that GODEL outperforms state-of-the-art pre-trained dialog models in few-shot fine-tuning setups.
A novel feature of our evaluation methodology is the introduction of a notion of utility that assesses the usefulness of responses.
arXiv Detail & Related papers (2022-06-22T18:19:32Z) - Mediators: Conversational Agents Explaining NLP Model Behavior [2.7878644615660457]
The human-centric explainable artificial intelligence (HCXAI) community has raised the need for framing the explanation process as a conversation between human and machine.
We establish desiderata for Mediators, text-based conversational agents capable of explaining the behavior of neural models interactively using natural language.
arXiv Detail & Related papers (2022-06-13T10:31:18Z) - Neural Approaches to Conversational Information Retrieval [94.77863916314979]
A conversational information retrieval (CIR) system is an information retrieval (IR) system with a conversational interface.
Recent progress in deep learning has brought tremendous improvements in natural language processing (NLP) and conversational AI.
This book surveys recent advances in CIR, focusing on neural approaches that have been developed in the last few years.
arXiv Detail & Related papers (2022-01-13T19:04:59Z) - SocAoG: Incremental Graph Parsing for Social Relation Inference in
Dialogues [112.94918467195637]
Inferring social relations from dialogues is vital for building emotionally intelligent robots.
We model the social network as an And-or Graph, named SocAoG, for the consistency of relations among a group.
Empirical results on DialogRE and MovieGraph show that our model infers social relations more accurately than the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-02T08:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.