PTTS: Zero-Knowledge Proof-based Private Token Transfer System on Ethereum Blockchain and its Network Flow Based Balance Range Privacy Attack Analysis
- URL: http://arxiv.org/abs/2308.15139v1
- Date: Tue, 29 Aug 2023 09:13:31 GMT
- Title: PTTS: Zero-Knowledge Proof-based Private Token Transfer System on Ethereum Blockchain and its Network Flow Based Balance Range Privacy Attack Analysis
- Authors: Goshgar Ismayilov, Can Ozturan,
- Abstract summary: We propose a Private Token Transfer System (PTTS) for the public blockchain.
For the proposed framework, zero-knowledge based protocol has been designed using Zokrates and integrated into our private token smart contract.
In the second part of the paper, we provide security and privacy analysis including the replay attack and the balance range privacy attack.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blockchains are decentralized and immutable databases that are shared among the nodes of the network. Although blockchains have attracted a great scale of attention in the recent years by disrupting the traditional financial systems, the transaction privacy is still a challenging issue that needs to be addressed and analysed. We propose a Private Token Transfer System (PTTS) for the Ethereum public blockchain in the first part of this paper. For the proposed framework, zero-knowledge based protocol has been designed using Zokrates and integrated into our private token smart contract. With the help of web user interface designed, the end users can interact with the smart contract without any third-party setup. In the second part of the paper, we provide security and privacy analysis including the replay attack and the balance range privacy attack which has been modelled as a network flow problem. It is shown that in case some balance ranges are deliberately leaked out to particular organizations or adversial entities, it is possible to extract meaningful information about the user balances by employing minimum cost flow network algorithms that have polynomial complexity. The experimental study reports the Ethereum gas consumption and proof generation times for the proposed framework. It also reports network solution times and goodness rates for a subset of addresses under the balance range privacy attack with respect to number of addresses, number of transactions and ratio of leaked transfer transaction amounts.
Related papers
- The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - IT Strategic alignment in the decentralized finance (DeFi): CBDC and digital currencies [49.1574468325115]
Decentralized finance (DeFi) is a disruptive-based financial infrastructure.
This paper seeks to answer two main questions 1) What are the common IT elements in the DeFi?
And 2) How the elements to the IT strategic alignment in DeFi?
arXiv Detail & Related papers (2024-05-17T10:19:20Z) - Blockchains for Internet of Things: Fundamentals, Applications, and Challenges [38.29453164670072]
Not every blockchain system is suitable for specific IoT applications.
Public blockchains are not suitable for storing sensitive data.
We explore the blockchain's application in three pivotal IoT areas: edge AI, communications, and healthcare.
arXiv Detail & Related papers (2024-05-08T04:25:57Z) - Larger-scale Nakamoto-style Blockchains Don't Necessarily Offer Better Security [1.2644625435032817]
Research on Nakamoto-style consensus protocols has shown that network delays degrade the security of these protocols.
This contradicts the very foundation of blockchains, namely that decentralization improves security.
We take a closer look at how the network scale affects security of Nakamoto-style blockchains.
arXiv Detail & Related papers (2024-04-15T16:09:41Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Architectural Design for Secure Smart Contract Development [0.0]
Several attacks on blockchain infrastructures have resulted in hundreds of millions of dollars lost and sensitive information compromised.
I identify common software vulnerabilities and attacks on blockchain infrastructures.
I propose a model for ensuring a stronger security standard for future systems leveraging smart contracts.
arXiv Detail & Related papers (2024-01-03T18:59:17Z) - Trustless Privacy-Preserving Data Aggregation on Ethereum with Hypercube Network Topology [0.0]
We have proposed a scalable privacy-preserving data aggregation protocol for summation on the blockchain.
The protocol consists of four stages as contract deployment, user registration, private submission and proof verification.
arXiv Detail & Related papers (2023-08-29T12:51:26Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking [5.579169055801065]
We study the problem of transaction tracking via link prediction, which provides a deeper understanding of transactions from a network perspective.
Specifically, we introduce an embedding based link prediction framework that is composed of temporal-amount snapshot multigraph (TASMG) and present temporal-amount walk (TAW)
By taking the realistic rules and features of transaction networks into consideration, we propose TASMG to model transaction records as a temporal-amount network and then present TAW to effectively embed accounts via their transaction records.
arXiv Detail & Related papers (2021-02-16T08:21:16Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.