Trustless Privacy-Preserving Data Aggregation on Ethereum with Hypercube Network Topology
- URL: http://arxiv.org/abs/2308.15267v1
- Date: Tue, 29 Aug 2023 12:51:26 GMT
- Title: Trustless Privacy-Preserving Data Aggregation on Ethereum with Hypercube Network Topology
- Authors: Goshgar Ismayilov, Can Ozturan,
- Abstract summary: We have proposed a scalable privacy-preserving data aggregation protocol for summation on the blockchain.
The protocol consists of four stages as contract deployment, user registration, private submission and proof verification.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The privacy-preserving data aggregation is a critical problem for many applications where multiple parties need to collaborate with each other privately to arrive at certain results. Blockchain, as a database shared across the network, provides an underlying platform on which such aggregations can be carried out with a decentralized manner. Therefore, in this paper, we have proposed a scalable privacy-preserving data aggregation protocol for summation on the Ethereum blockchain by integrating several cryptographic primitives including commitment scheme, asymmetric encryption and zero-knowledge proof along with the hypercube network topology. The protocol consists of four stages as contract deployment, user registration, private submission and proof verification. The analysis of the protocol is made with respect to two main perspectives as security and scalability including computational, communicational and storage overheads. In the paper, the zero-knowledge proof, smart contract and web user interface models for the protocol are provided. We have performed an experimental study in order to identify the required gas costs per individual and per system. The general formulation is provided to characterize the changes in gas costs for the increasing number of users. The zero-knowledge proof generation and verification times are also measured.
Related papers
- Decentralized Biometric Authentication based on Fuzzy Commitments and Blockchain [6.540771405203321]
We propose a blockchain-based biometric authentication protocol that enables decentralization and resilience while protecting the privacy, personal data, and, in particular, biometric features of users.
arXiv Detail & Related papers (2024-09-17T15:58:06Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data.
The transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates.
We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy.
arXiv Detail & Related papers (2024-07-12T03:18:08Z) - Scalable Zero-Knowledge Proofs for Verifying Cryptographic Hashing in Blockchain Applications [16.72979347045808]
Zero-knowledge proofs (ZKPs) have emerged as a promising solution to address the scalability challenges in modern blockchain systems.
This study proposes a methodology for generating and verifying ZKPs to ensure the computational integrity of cryptographic hashing.
arXiv Detail & Related papers (2024-07-03T21:19:01Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - The Boomerang protocol: A Decentralised Privacy-Preserving Verifiable Incentive Protocol [5.384175614198884]
We propose the BOOMERANG protocol for privacy-preserving incentive systems.
It uses cryptographic black box accumulators to store user interactions privately.
It also employs zero-knowledge proofs to transparently compute rewards for users.
arXiv Detail & Related papers (2023-12-06T09:37:45Z) - PTTS: Zero-Knowledge Proof-based Private Token Transfer System on Ethereum Blockchain and its Network Flow Based Balance Range Privacy Attack Analysis [0.0]
We propose a Private Token Transfer System (PTTS) for the public blockchain.
For the proposed framework, zero-knowledge based protocol has been designed using Zokrates and integrated into our private token smart contract.
In the second part of the paper, we provide security and privacy analysis including the replay attack and the balance range privacy attack.
arXiv Detail & Related papers (2023-08-29T09:13:31Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
We consider a federated data analytics problem in which a server coordinates the collaborative data analysis of multiple users with privacy concerns and limited communication capability.
We study the local differential privacy guarantees of discrete-valued mechanisms with finite output space through the lens of $f$-differential privacy (DP)
More specifically, we advance the existing literature by deriving tight $f$-DP guarantees for a variety of discrete-valued mechanisms.
arXiv Detail & Related papers (2023-02-19T16:58:53Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - An Accurate, Scalable and Verifiable Protocol for Federated
Differentially Private Averaging [0.0]
We tackle challenges regarding the privacy guarantees provided to participants and the correctness of the computation in the presence of malicious parties.
Our first contribution is a scalable protocol in which participants exchange correlated Gaussian noise along the edges of a network graph.
Our second contribution enables users to prove the correctness of their computations without compromising the efficiency and privacy guarantees of the protocol.
arXiv Detail & Related papers (2020-06-12T14:21:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.