Lifelike Agility and Play in Quadrupedal Robots using Reinforcement Learning and Generative Pre-trained Models
- URL: http://arxiv.org/abs/2308.15143v2
- Date: Sat, 6 Jul 2024 09:59:12 GMT
- Title: Lifelike Agility and Play in Quadrupedal Robots using Reinforcement Learning and Generative Pre-trained Models
- Authors: Lei Han, Qingxu Zhu, Jiapeng Sheng, Chong Zhang, Tingguang Li, Yizheng Zhang, He Zhang, Yuzhen Liu, Cheng Zhou, Rui Zhao, Jie Li, Yufeng Zhang, Rui Wang, Wanchao Chi, Xiong Li, Yonghui Zhu, Lingzhu Xiang, Xiao Teng, Zhengyou Zhang,
- Abstract summary: We propose a hierarchical framework to construct primitive-, environmental- and strategic-level knowledge that are all pre-trainable, reusable and enrichable for legged robots.
The primitive module summarizes knowledge from animal motion data, where, inspired by large pre-trained models in language and image understanding, we introduce deep generative models to produce motor control signals stimulating legged robots to act like real animals.
We apply the trained hierarchical controllers to the MAX robot, a quadrupedal robot developed in-house, to mimic animals, traverse complex obstacles and play in a designed challenging multi-agent chase tag game.
- Score: 28.519964304030236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge from animals and humans inspires robotic innovations. Numerous efforts have been made to achieve agile locomotion in quadrupedal robots through classical controllers or reinforcement learning approaches. These methods usually rely on physical models or handcrafted rewards to accurately describe the specific system, rather than on a generalized understanding like animals do. Here we propose a hierarchical framework to construct primitive-, environmental- and strategic-level knowledge that are all pre-trainable, reusable and enrichable for legged robots. The primitive module summarizes knowledge from animal motion data, where, inspired by large pre-trained models in language and image understanding, we introduce deep generative models to produce motor control signals stimulating legged robots to act like real animals. Then, we shape various traversing capabilities at a higher level to align with the environment by reusing the primitive module. Finally, a strategic module is trained focusing on complex downstream tasks by reusing the knowledge from previous levels. We apply the trained hierarchical controllers to the MAX robot, a quadrupedal robot developed in-house, to mimic animals, traverse complex obstacles and play in a designed challenging multi-agent chase tag game, where lifelike agility and strategy emerge in the robots.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Generalized Animal Imitator: Agile Locomotion with Versatile Motion Prior [14.114972332185044]
This paper introduces the Versatile Motion prior (VIM) - a Reinforcement Learning framework designed to incorporate a range of agile locomotion tasks.
Our framework enables legged robots to learn diverse agile low-level skills by imitating animal motions and manually designed motions.
Our evaluations of the VIM framework span both simulation environments and real-world deployment.
arXiv Detail & Related papers (2023-10-02T17:59:24Z) - RoboCat: A Self-Improving Generalist Agent for Robotic Manipulation [33.10577695383743]
We propose a multi-embodiment, multi-task generalist agent for robotic manipulation called RoboCat.
This data spans a large repertoire of motor control skills from simulated and real robotic arms with varying sets of observations and actions.
With RoboCat, we demonstrate the ability to generalise to new tasks and robots, both zero-shot as well as through adaptation using only 100-1000 examples.
arXiv Detail & Related papers (2023-06-20T17:35:20Z) - Surfer: Progressive Reasoning with World Models for Robotic Manipulation [51.26109827779267]
We introduce a novel and simple robot manipulation framework, called Surfer.
Surfer treats robot manipulation as a state transfer of the visual scene, and decouples it into two parts: action and scene.
It is based on the world model, treats robot manipulation as a state transfer of the visual scene, and decouples it into two parts: action and scene.
arXiv Detail & Related papers (2023-06-20T07:06:04Z) - Barkour: Benchmarking Animal-level Agility with Quadruped Robots [70.97471756305463]
We introduce the Barkour benchmark, an obstacle course to quantify agility for legged robots.
Inspired by dog agility competitions, it consists of diverse obstacles and a time based scoring mechanism.
We present two methods for tackling the benchmark.
arXiv Detail & Related papers (2023-05-24T02:49:43Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
We present a fully learning-based approach for real-world humanoid locomotion.
Our controller can walk over various outdoor terrains, is robust to external disturbances, and can adapt in context.
arXiv Detail & Related papers (2023-03-06T18:59:09Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - Imitate and Repurpose: Learning Reusable Robot Movement Skills From
Human and Animal Behaviors [28.22210425264389]
We investigate the use of prior knowledge of human and animal movement to learn reusable locomotion skills for real legged robots.
Our approach builds upon previous work on imitating human or dog Motion Capture (MoCap) data to learn a movement skill module.
arXiv Detail & Related papers (2022-03-31T16:01:32Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
Reproducing the diverse and agile locomotion skills of animals has been a longstanding challenge in robotics.
We present an imitation learning system that enables legged robots to learn agile locomotion skills by imitating real-world animals.
arXiv Detail & Related papers (2020-04-02T02:56:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.