On-the-Fly Guidance Training for Medical Image Registration
- URL: http://arxiv.org/abs/2308.15216v5
- Date: Fri, 12 Jul 2024 07:49:05 GMT
- Title: On-the-Fly Guidance Training for Medical Image Registration
- Authors: Yuelin Xin, Yicheng Chen, Shengxiang Ji, Kun Han, Xiaohui Xie,
- Abstract summary: This study introduces a novel On-the-Fly Guidance (OFG) training framework for enhancing existing learning-based image registration models.
Our method proposes a supervised fashion for training registration models, without the need for any labeled data.
Our method is tested across several benchmark datasets and leading models, it significantly enhanced performance.
- Score: 14.309599960641242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a novel On-the-Fly Guidance (OFG) training framework for enhancing existing learning-based image registration models, addressing the limitations of weakly-supervised and unsupervised methods. Weakly-supervised methods struggle due to the scarcity of labeled data, and unsupervised methods directly depend on image similarity metrics for accuracy. Our method proposes a supervised fashion for training registration models, without the need for any labeled data. OFG generates pseudo-ground truth during training by refining deformation predictions with a differentiable optimizer, enabling direct supervised learning. OFG optimizes deformation predictions efficiently, improving the performance of registration models without sacrificing inference speed. Our method is tested across several benchmark datasets and leading models, it significantly enhanced performance, providing a plug-and-play solution for training learning-based registration models. Code available at: https://github.com/cilix-ai/on-the-fly-guidance
Related papers
- Self-Supervised Radio Pre-training: Toward Foundational Models for Spectrogram Learning [6.1339395157466425]
Foundational deep learning (DL) models are general models, trained on diverse, diverse, and unlabelled datasets.
We introduce Masked Spectrogram Modeling, a novel self-supervised learning approach for pretraining foundational DL models on radio signals.
arXiv Detail & Related papers (2024-11-14T23:56:57Z) - Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think [72.48325960659822]
One main bottleneck in training large-scale diffusion models for generation lies in effectively learning these representations.
We study this by introducing a straightforward regularization called REPresentation Alignment (REPA), which aligns the projections of noisy input hidden states in denoising networks with clean image representations obtained from external, pretrained visual encoders.
The results are striking: our simple strategy yields significant improvements in both training efficiency and generation quality when applied to popular diffusion and flow-based transformers, such as DiTs and SiTs.
arXiv Detail & Related papers (2024-10-09T14:34:53Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Test-time adaptation for geospatial point cloud semantic segmentation with distinct domain shifts [6.80671668491958]
Test-time adaptation (TTA) allows direct adaptation of a pre-trained model to unlabeled data during inference stage without access to source data or additional training.
We propose three domain shift paradigms: photogrammetric to airborne LiDAR, airborne to mobile LiDAR, and synthetic to mobile laser scanning.
Experimental results show our method improves classification accuracy by up to 20% mIoU, outperforming other methods.
arXiv Detail & Related papers (2024-07-08T15:40:28Z) - Diffusion Model Driven Test-Time Image Adaptation for Robust Skin Lesion Classification [24.08402880603475]
We propose a test-time image adaptation method to enhance the accuracy of the model on test data.
We modify the target test images by projecting them back to the source domain using a diffusion model.
Our method makes the robustness more robust across various corruptions, architectures, and data regimes.
arXiv Detail & Related papers (2024-05-18T13:28:51Z) - Towards Seamless Adaptation of Pre-trained Models for Visual Place Recognition [72.35438297011176]
We propose a novel method to realize seamless adaptation of pre-trained models for visual place recognition (VPR)
Specifically, to obtain both global and local features that focus on salient landmarks for discriminating places, we design a hybrid adaptation method.
Experimental results show that our method outperforms the state-of-the-art methods with less training data and training time.
arXiv Detail & Related papers (2024-02-22T12:55:01Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - An Adaptive Framework for Learning Unsupervised Depth Completion [59.17364202590475]
We present a method to infer a dense depth map from a color image and associated sparse depth measurements.
We show that regularization and co-visibility are related via the fitness of the model to data and can be unified into a single framework.
arXiv Detail & Related papers (2021-06-06T02:27:55Z) - PrIU: A Provenance-Based Approach for Incrementally Updating Regression
Models [9.496524884855559]
This paper presents an efficient provenance-based approach, PrIU, for incrementally updating model parameters without sacrificing prediction accuracy.
We prove the correctness and convergence of the incrementally updated model parameters, and validate it experimentally.
Experimental results show that up to two orders of magnitude speed-ups can be achieved by PrIU-opt compared to simply retraining the model from scratch, yet obtaining highly similar models.
arXiv Detail & Related papers (2020-02-26T21:04:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.