Test-time adaptation for geospatial point cloud semantic segmentation with distinct domain shifts
- URL: http://arxiv.org/abs/2407.06043v1
- Date: Mon, 8 Jul 2024 15:40:28 GMT
- Title: Test-time adaptation for geospatial point cloud semantic segmentation with distinct domain shifts
- Authors: Puzuo Wang, Wei Yao, Jie Shao, Zhiyi He,
- Abstract summary: Test-time adaptation (TTA) allows direct adaptation of a pre-trained model to unlabeled data during inference stage without access to source data or additional training.
We propose three domain shift paradigms: photogrammetric to airborne LiDAR, airborne to mobile LiDAR, and synthetic to mobile laser scanning.
Experimental results show our method improves classification accuracy by up to 20% mIoU, outperforming other methods.
- Score: 6.80671668491958
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Domain adaptation (DA) techniques help deep learning models generalize across data shifts for point cloud semantic segmentation (PCSS). Test-time adaptation (TTA) allows direct adaptation of a pre-trained model to unlabeled data during inference stage without access to source data or additional training, avoiding privacy issues and large computational resources. We address TTA for geospatial PCSS by introducing three domain shift paradigms: photogrammetric to airborne LiDAR, airborne to mobile LiDAR, and synthetic to mobile laser scanning. We propose a TTA method that progressively updates batch normalization (BN) statistics with each testing batch. Additionally, a self-supervised learning module optimizes learnable BN affine parameters. Information maximization and reliability-constrained pseudo-labeling improve prediction confidence and supply supervisory signals. Experimental results show our method improves classification accuracy by up to 20\% mIoU, outperforming other methods. For photogrammetric (SensatUrban) to airborne (Hessigheim 3D) adaptation at the inference stage, our method achieves 59.46\% mIoU and 85.97\% OA without retraining or fine-turning.
Related papers
- A Bayesian Approach to Data Point Selection [24.98069363998565]
Data point selection (DPS) is becoming a critical topic in deep learning.
Existing approaches to DPS are predominantly based on a bi-level optimisation (BLO) formulation.
We propose a novel Bayesian approach to DPS.
arXiv Detail & Related papers (2024-11-06T09:04:13Z) - Test-Time Adaptation in Point Clouds: Leveraging Sampling Variation with Weight Averaging [17.74824534094739]
Test-Time Adaptation (TTA) addresses distribution shifts during testing by adapting a pretrained model without access to source data.
We propose a novel TTA approach for 3D point cloud classification, combining sampling variation with weight averaging.
arXiv Detail & Related papers (2024-11-02T02:59:25Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
Domain Adaptation (DA) facilitates knowledge transfer from a source domain to a related target domain.
This paper investigates a practical DA paradigm, namely Source data-Free Active Domain Adaptation (SFADA), where source data becomes inaccessible during adaptation.
We present learn from the learnt (LFTL), a novel paradigm for SFADA to leverage the learnt knowledge from the source pretrained model and actively iterated models without extra overhead.
arXiv Detail & Related papers (2024-07-26T17:51:58Z) - On-the-Fly Guidance Training for Medical Image Registration [14.309599960641242]
This study introduces a novel On-the-Fly Guidance (OFG) training framework for enhancing existing learning-based image registration models.
Our method proposes a supervised fashion for training registration models, without the need for any labeled data.
Our method is tested across several benchmark datasets and leading models, it significantly enhanced performance.
arXiv Detail & Related papers (2023-08-29T11:12:53Z) - Diverse Data Augmentation with Diffusions for Effective Test-time Prompt
Tuning [73.75282761503581]
We propose DiffTPT, which leverages pre-trained diffusion models to generate diverse and informative new data.
Our experiments on test datasets with distribution shifts and unseen categories demonstrate that DiffTPT improves the zero-shot accuracy by an average of 5.13%.
arXiv Detail & Related papers (2023-08-11T09:36:31Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
Transformer-based supervised pre-training achieves great performance in person re-identification (ReID)
Due to the domain gap between ImageNet and ReID datasets, it usually needs a larger pre-training dataset to boost the performance.
This work aims to mitigate the gap between the pre-training and ReID datasets from the perspective of data and model structure.
arXiv Detail & Related papers (2021-11-23T18:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.