論文の概要: Classification-Aware Neural Topic Model Combined With Interpretable
Analysis -- For Conflict Classification
- arxiv url: http://arxiv.org/abs/2308.15232v1
- Date: Tue, 29 Aug 2023 11:40:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 14:29:26.042140
- Title: Classification-Aware Neural Topic Model Combined With Interpretable
Analysis -- For Conflict Classification
- Title(参考訳): 解釈解析と組み合わせた分類対応ニューラルトピックモデル - 衝突分類のための
- Authors: Tianyu Liang, Yida Mu, Soonho Kim, Darline Larissa Kengne Kuate, Julie
Lang, Rob Vos, Xingyi Song
- Abstract要約: 本稿では,紛争情報分類とトピック発見のための分類対応ニューラルトピックモデル(CANTM-IA)を提案する。
このモデルは、解釈可能性分析を導入することにより、分類結果と発見トピックの信頼性の高い解釈を提供する。
- 参考スコア(独自算出の注目度): 0.46281866475250544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A large number of conflict events are affecting the world all the time. In
order to analyse such conflict events effectively, this paper presents a
Classification-Aware Neural Topic Model (CANTM-IA) for Conflict Information
Classification and Topic Discovery. The model provides a reliable
interpretation of classification results and discovered topics by introducing
interpretability analysis. At the same time, interpretation is introduced into
the model architecture to improve the classification performance of the model
and to allow interpretation to focus further on the details of the data.
Finally, the model architecture is optimised to reduce the complexity of the
model.
- Abstract(参考訳): 多くの紛争が常に世界に影響を与える。
本稿では,これらの紛争を効果的に分析するために,紛争情報分類とトピック発見のための分類認識ニューラルネットワーク(CANTM-IA)を提案する。
このモデルは、解釈可能性分析の導入により、分類結果と発見トピックの信頼できる解釈を提供する。
同時に、モデルアーキテクチャに解釈を導入し、モデルの分類性能を改善し、データの詳細にさらに焦点を合わせられるようにする。
最後に、モデルアーキテクチャはモデルの複雑さを減らすために最適化される。
関連論文リスト
- Towards Compositional Interpretability for XAI [3.3768167170511587]
本稿では,カテゴリ理論に基づくAIモデルとその解釈可能性の定義手法を提案する。
我々は、幅広いAIモデルを構成モデルと比較する。
標準の'本質的に解釈可能な'モデルを作るものは、最も明確に図式化されます。
論文 参考訳(メタデータ) (2024-06-25T14:27:03Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Revisiting Spurious Correlation in Domain Generalization [12.745076668687748]
データ生成プロセスにおける因果関係を記述するために,構造因果モデル(SCM)を構築した。
さらに、スプリアス相関に基づくメカニズムを徹底的に分析する。
そこで本研究では,OOD一般化における共起バイアスの制御について,相対性スコア重み付き推定器を導入して提案する。
論文 参考訳(メタデータ) (2024-06-17T13:22:00Z) - Topic Modeling as Multi-Objective Contrastive Optimization [46.24876966674759]
近年の表現学習アプローチは、ログライクリフのエビデンスローバウンド(ELBO)の重み付けされた線形結合と、入力文書のペアを対比する対照的な学習目標を最適化することにより、ニューラルトピックモデルを強化する。
本稿では,一組の入力文書間で共有される有用なセマンティクスを捉えるために,話題ベクトルの集合を指向した新しいコントラスト学習手法を提案する。
我々のフレームワークは、トピックコヒーレンス、トピックの多様性、下流のパフォーマンスの観点から、高性能なニューラルトピックモデルを一貫して生成する。
論文 参考訳(メタデータ) (2024-02-12T11:18:32Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Are Neural Topic Models Broken? [81.15470302729638]
トピックモデルの自動評価と人的評価の関係について検討する。
ニューラルトピックモデルは、確立された古典的手法と比較して、両方の点においてより悪くなる。
論文 参考訳(メタデータ) (2022-10-28T14:38:50Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Influence Tuning: Demoting Spurious Correlations via Instance
Attribution and Instance-Driven Updates [26.527311287924995]
インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
制御された設定では、インフルエンスチューニングは、データの急激なパターンからモデルを分解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-07T06:59:46Z) - A Topological-Framework to Improve Analysis of Machine Learning Model
Performance [5.3893373617126565]
本稿では、データセットをモデルが動作する「空間」として扱う機械学習モデルを評価するためのフレームワークを提案する。
本稿では,各サブポピュレーション間でのモデル性能の保存と解析に有用なトポロジカルデータ構造であるプレシーブについて述べる。
論文 参考訳(メタデータ) (2021-07-09T23:11:13Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
NERタスクをテストベッドとして、異なる視点から既存モデルの一般化挙動を分析する。
詳細な分析による実験は、既存のニューラルNERモデルのボトルネックを診断する。
本論文の副産物として,最近のNER論文の包括的要約を含むプロジェクトをオープンソース化した。
論文 参考訳(メタデータ) (2020-01-12T04:33:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。