Natural language to SQL in low-code platforms
- URL: http://arxiv.org/abs/2308.15239v1
- Date: Tue, 29 Aug 2023 11:59:02 GMT
- Title: Natural language to SQL in low-code platforms
- Authors: Sofia Aparicio, Samuel Arcadinho, Jo\~ao Nadkarni, David Apar\'icio,
Jo\~ao Lages, Mariana Louren\c{c}o, Bart{\l}omiej Matejczyk, Filipe
Assun\c{c}\~ao
- Abstract summary: We propose a pipeline allowing developers to write natural language (NL) queries.
We collect, label, and validate data covering the queries most often performed by OutSystems users.
We describe the entire pipeline, which comprises a feedback loop that allows us to quickly collect production data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the developers' biggest challenges in low-code platforms is retrieving
data from a database using SQL queries. Here, we propose a pipeline allowing
developers to write natural language (NL) to retrieve data. In this study, we
collect, label, and validate data covering the SQL queries most often performed
by OutSystems users. We use that data to train a NL model that generates SQL.
Alongside this, we describe the entire pipeline, which comprises a feedback
loop that allows us to quickly collect production data and use it to retrain
our SQL generation model. Using crowd-sourcing, we collect 26k NL and SQL pairs
and obtain an additional 1k pairs from production data. Finally, we develop a
UI that allows developers to input a NL query in a prompt and receive a
user-friendly representation of the resulting SQL query. We use A/B testing to
compare four different models in production and observe a 240% improvement in
terms of adoption of the feature, 220% in terms of engagement rate, and a 90%
decrease in failure rate when compared against the first model that we put into
production, showcasing the effectiveness of our pipeline in continuously
improving our feature.
Related papers
- Spider 2.0: Evaluating Language Models on Real-World Enterprise Text-to-SQL Workflows [64.94146689665628]
Spider 2.0 is an evaluation framework for real-world text-to-sql problems derived from enterprise-level database use cases.
The databases in Spider 2.0 are sourced from real data applications, often containing over 1,000 columns and stored in local or cloud database systems such as BigQuery and Snowflake.
We show that solving problems in Spider 2.0 frequently requires understanding and searching through database metadata, dialect documentation, and even project-levels.
arXiv Detail & Related papers (2024-11-12T12:52:17Z) - MSc-SQL: Multi-Sample Critiquing Small Language Models For Text-To-SQL Translation [10.205010004198757]
Text-to-generation enables non-experts to interact with databases via natural language.
Recent advances on large closed-source models like GPT-4 present challenges in accessibility, privacy, and latency.
We focus on developing small, efficient, and open-source text-to-generation models.
arXiv Detail & Related papers (2024-10-16T18:03:24Z) - SQL-GEN: Bridging the Dialect Gap for Text-to-SQL Via Synthetic Data And Model Merging [30.306023265985658]
We introduce a framework for generating high-quality synthetic training data for any dialect.
We propose a novel Mixture-of-Experts (MoE) that leverages the shared knowledge across dialects.
arXiv Detail & Related papers (2024-08-22T20:50:48Z) - TrustSQL: Benchmarking Text-to-SQL Reliability with Penalty-Based Scoring [11.78795632771211]
We introduce a novel benchmark designed to evaluate text-to- reliability as a model's ability to correctly handle any type of input question.
We evaluate existing methods using a novel penalty-based scoring metric with two modeling approaches.
arXiv Detail & Related papers (2024-03-23T16:12:52Z) - Fine-Tuning Language Models for Context-Specific SQL Query Generation [0.0]
This paper presents a novel approach to fine-tuning open-source large language models (LLMs) for the task of transforming natural language intosql queries.
We introduce models specialized in generatingsql queries, trained on synthetic datasets tailored to the Snowflake SQL and Google dialects.
Our methodology involves generating a context-specific dataset using GPT-4, then fine-tuning three open-source LLMs(Starcoder Plus, Code-Llama, and Mistral) employing the LoRa technique to optimize for resource constraints.
The fine-tuned models demonstrate superior performance in zero-shot settings compared to the baseline GP
arXiv Detail & Related papers (2023-12-04T18:04:27Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
"Prompt" is designed to improve the few-shot prompting capabilities of Text-to-LLMs.
"Prompt" outperforms previous approaches for in-context learning with few labeled data by a large margin.
We show that emphPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin.
arXiv Detail & Related papers (2023-11-06T05:24:06Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
We introduce a UNIfied benchmark for Text-to-domain systems.
It is composed of publicly available text-to-domain datasets and 29K databases.
Compared to the widely used Spider benchmark, we introduce a threefold increase in SQL patterns.
arXiv Detail & Related papers (2023-05-25T17:19:52Z) - Can LLM Already Serve as A Database Interface? A BIg Bench for
Large-Scale Database Grounded Text-to-SQLs [89.68522473384522]
We present Bird, a big benchmark for large-scale database grounded in text-to-efficient tasks.
Our emphasis on database values highlights the new challenges of dirty database contents.
Even the most effective text-to-efficient models, i.e. ChatGPT, achieves only 40.08% in execution accuracy.
arXiv Detail & Related papers (2023-05-04T19:02:29Z) - Weakly Supervised Text-to-SQL Parsing through Question Decomposition [53.22128541030441]
We take advantage of the recently proposed question meaning representation called QDMR.
Given questions, their QDMR structures (annotated by non-experts or automatically predicted) and the answers, we are able to automatically synthesizesql queries.
Our results show that the weakly supervised models perform competitively with those trained on NL- benchmark data.
arXiv Detail & Related papers (2021-12-12T20:02:42Z) - Bertrand-DR: Improving Text-to-SQL using a Discriminative Re-ranker [1.049360126069332]
We propose a novel discnative re-ranker to improve the performance of generative text-to-rimi models.
We analyze relative strengths of the text-to-rimi and re-ranker models for optimal performance.
We demonstrate the effectiveness of the re-ranker by applying it to two state-of-the-art text-to-rimi models.
arXiv Detail & Related papers (2020-02-03T04:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.