Spatio-temporal MLP-graph network for 3D human pose estimation
- URL: http://arxiv.org/abs/2308.15313v1
- Date: Tue, 29 Aug 2023 14:00:55 GMT
- Title: Spatio-temporal MLP-graph network for 3D human pose estimation
- Authors: Tanvir Hassan and A. Ben Hamza
- Abstract summary: Graph convolutional networks and their variants have shown significant promise in 3D human pose estimation.
We introduce a new weighted Jacobi feature rule obtained through graph filtering with implicit propagation fairing.
We also employ adjacency modulation with the aim of learning meaningful correlations beyond defined between body joints.
- Score: 8.267311047244881
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph convolutional networks and their variants have shown significant
promise in 3D human pose estimation. Despite their success, most of these
methods only consider spatial correlations between body joints and do not take
into account temporal correlations, thereby limiting their ability to capture
relationships in the presence of occlusions and inherent ambiguity. To address
this potential weakness, we propose a spatio-temporal network architecture
composed of a joint-mixing multi-layer perceptron block that facilitates
communication among different joints and a graph weighted Jacobi network block
that enables communication among various feature channels. The major novelty of
our approach lies in a new weighted Jacobi feature propagation rule obtained
through graph filtering with implicit fairing. We leverage temporal information
from the 2D pose sequences, and integrate weight modulation into the model to
enable untangling of the feature transformations of distinct nodes. We also
employ adjacency modulation with the aim of learning meaningful correlations
beyond defined linkages between body joints by altering the graph topology
through a learnable modulation matrix. Extensive experiments on two benchmark
datasets demonstrate the effectiveness of our model, outperforming recent
state-of-the-art methods for 3D human pose estimation.
Related papers
- 3D Hand Reconstruction via Aggregating Intra and Inter Graphs Guided by
Prior Knowledge for Hand-Object Interaction Scenario [8.364378460776832]
We propose a 3D hand reconstruction network combining the benefits of model-based and model-free approaches to balance accuracy and physical plausibility for hand-object interaction scenario.
Firstly, we present a novel MANO pose parameters regression module from 2D joints directly, which avoids the process of highly nonlinear mapping from abstract image feature.
arXiv Detail & Related papers (2024-03-04T05:11:26Z) - Iterative Graph Filtering Network for 3D Human Pose Estimation [5.177947445379688]
Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose estimation.
In this paper, we introduce an iterative graph filtering framework for 3D human pose estimation.
Our approach builds upon the idea of iteratively solving graph filtering with Laplacian regularization.
arXiv Detail & Related papers (2023-07-29T20:46:44Z) - Regular Splitting Graph Network for 3D Human Pose Estimation [5.177947445379688]
We introduce a higher-order regular splitting graph network (RS-Net) for 2D-to-3D human pose estimation.
Our model achieves superior performance over recent state-of-the-art methods for 3D human pose estimation.
arXiv Detail & Related papers (2023-05-09T22:13:04Z) - (Fusionformer):Exploiting the Joint Motion Synergy with Fusion Network
Based On Transformer for 3D Human Pose Estimation [1.52292571922932]
Many previous methods lack the understanding of local joint information.cite8888987considers the temporal relationship of a single joint in this work.
Our proposed textbfFusionformer method introduces a global-temporal self-trajectory module and a cross-temporal self-trajectory module.
The results show an improvement of 2.4% MPJPE and 4.3% P-MPJPE on the Human3.6M dataset.
arXiv Detail & Related papers (2022-10-08T12:22:10Z) - Skeleton-Parted Graph Scattering Networks for 3D Human Motion Prediction [120.08257447708503]
Graph convolutional network based methods that model the body-joints' relations, have recently shown great promise in 3D skeleton-based human motion prediction.
We propose a novel skeleton-parted graph scattering network (SPGSN)
SPGSN outperforms state-of-the-art methods by remarkable margins of 13.8%, 9.3% and 2.7% in terms of 3D mean per joint position error (MPJPE) on Human3.6M, CMU Mocap and 3DPW datasets, respectively.
arXiv Detail & Related papers (2022-07-31T05:51:39Z) - MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose
Estimation in Video [75.23812405203778]
Recent solutions have been introduced to estimate 3D human pose from 2D keypoint sequence by considering body joints among all frames globally to learn-temporal correlation.
We propose Mix Mix, which has temporal transformer block to separately model the temporal motion of each joint and a transformer block inter-joint spatial correlation.
In addition, the network output is extended from the central frame to entire frames of input video, improving the coherence between the input and output benchmarks.
arXiv Detail & Related papers (2022-03-02T04:20:59Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Enhanced 3D Human Pose Estimation from Videos by using Attention-Based
Neural Network with Dilated Convolutions [12.900524511984798]
We show a systematic design for how conventional networks and other forms of constraints can be incorporated into the attention framework.
We achieve this by adapting temporal receptive field via a multi-scale structure of dilated convolutions.
Our method achieves the state-of-the-art performance and outperforms existing methods by reducing the mean per joint position error to 33.4 mm on Human3.6M dataset.
arXiv Detail & Related papers (2021-03-04T17:26:51Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - MotioNet: 3D Human Motion Reconstruction from Monocular Video with
Skeleton Consistency [72.82534577726334]
We introduce MotioNet, a deep neural network that directly reconstructs the motion of a 3D human skeleton from monocular video.
Our method is the first data-driven approach that directly outputs a kinematic skeleton, which is a complete, commonly used, motion representation.
arXiv Detail & Related papers (2020-06-22T08:50:09Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.