PoseGRAF: Geometric-Reinforced Adaptive Fusion for Monocular 3D Human Pose Estimation
- URL: http://arxiv.org/abs/2506.14596v1
- Date: Tue, 17 Jun 2025 14:59:56 GMT
- Title: PoseGRAF: Geometric-Reinforced Adaptive Fusion for Monocular 3D Human Pose Estimation
- Authors: Ming Xu, Xu Zhang,
- Abstract summary: Existing monocular 3D pose estimation methods rely on joint positional features, while overlooking intrinsic directional and angular correlations within the skeleton.<n>We propose the PoseGRAF framework to address these challenges.<n> Experimental results on the Human3.6M and MPI-INF-3DHP datasets show that our method exceeds state-of-the-art approaches.
- Score: 5.223657684081615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing monocular 3D pose estimation methods primarily rely on joint positional features, while overlooking intrinsic directional and angular correlations within the skeleton. As a result, they often produce implausible poses under joint occlusions or rapid motion changes. To address these challenges, we propose the PoseGRAF framework. We first construct a dual graph convolutional structure that separately processes joint and bone graphs, effectively capturing their local dependencies. A Cross-Attention module is then introduced to model interdependencies between bone directions and joint features. Building upon this, a dynamic fusion module is designed to adaptively integrate both feature types by leveraging the relational dependencies between joints and bones. An improved Transformer encoder is further incorporated in a residual manner to generate the final output. Experimental results on the Human3.6M and MPI-INF-3DHP datasets show that our method exceeds state-of-the-art approaches. Additional evaluations on in-the-wild videos further validate its generalizability. The code is publicly available at https://github.com/iCityLab/PoseGRAF.
Related papers
- 3D Human Pose Estimation via Spatial Graph Order Attention and Temporal Body Aware Transformer [5.303583360581161]
We propose a new method that exploits the graph modeling capability of GCN to represent each skeleton with multiple graphs of different orders.<n>The resulting spatial features of the sequence are processed using a proposed temporal Body Aware Transformer.<n>Experiments on Human3.6m, MPIINF-3DHP, and HumanEva-I datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2025-05-02T04:58:04Z) - SkelFormer: Markerless 3D Pose and Shape Estimation using Skeletal Transformers [57.46911575980854]
We introduce SkelFormer, a novel markerless motion capture pipeline for multi-view human pose and shape estimation.
Our method first uses off-the-shelf 2D keypoint estimators, pre-trained on large-scale in-the-wild data, to obtain 3D joint positions.
Next, we design a regression-based inverse-kinematic skeletal transformer that maps the joint positions to pose and shape representations from heavily noisy observations.
arXiv Detail & Related papers (2024-04-19T04:51:18Z) - Spatio-temporal MLP-graph network for 3D human pose estimation [8.267311047244881]
Graph convolutional networks and their variants have shown significant promise in 3D human pose estimation.
We introduce a new weighted Jacobi feature rule obtained through graph filtering with implicit propagation fairing.
We also employ adjacency modulation with the aim of learning meaningful correlations beyond defined between body joints.
arXiv Detail & Related papers (2023-08-29T14:00:55Z) - PoseGraphNet++: Enriching 3D Human Pose with Orientation Estimation [43.261111977510105]
Existing skeleton-based 3D human pose estimation methods only predict joint positions.
We present PoseGraphNet++, a novel 2D-to-3D lifting Graph Convolution Network that predicts the complete human pose in 3D.
arXiv Detail & Related papers (2023-08-22T13:42:15Z) - Iterative Graph Filtering Network for 3D Human Pose Estimation [5.177947445379688]
Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose estimation.
In this paper, we introduce an iterative graph filtering framework for 3D human pose estimation.
Our approach builds upon the idea of iteratively solving graph filtering with Laplacian regularization.
arXiv Detail & Related papers (2023-07-29T20:46:44Z) - Shuffled Autoregression For Motion Interpolation [53.61556200049156]
This work aims to provide a deep-learning solution for the motion task.
We propose a novel framework, referred to as emphShuffled AutoRegression, which expands the autoregression to generate in arbitrary (shuffled) order.
We also propose an approach to constructing a particular kind of dependency graph, with three stages assembled into an end-to-end spatial-temporal motion Transformer.
arXiv Detail & Related papers (2023-06-10T07:14:59Z) - (Fusionformer):Exploiting the Joint Motion Synergy with Fusion Network
Based On Transformer for 3D Human Pose Estimation [1.52292571922932]
Many previous methods lack the understanding of local joint information.cite8888987considers the temporal relationship of a single joint in this work.
Our proposed textbfFusionformer method introduces a global-temporal self-trajectory module and a cross-temporal self-trajectory module.
The results show an improvement of 2.4% MPJPE and 4.3% P-MPJPE on the Human3.6M dataset.
arXiv Detail & Related papers (2022-10-08T12:22:10Z) - CrossFormer: Cross Spatio-Temporal Transformer for 3D Human Pose
Estimation [24.08170512746056]
3D human pose estimation can be handled by encoding the geometric dependencies between the body parts and enforcing the kinematic constraints.
Recent Transformer has been adopted to encode the long-range dependencies between the joints in the spatial and temporal domains.
We propose a novel pose estimation Transformer featuring rich representations of body joints critical for capturing subtle changes across frames.
arXiv Detail & Related papers (2022-03-24T23:40:11Z) - MixSTE: Seq2seq Mixed Spatio-Temporal Encoder for 3D Human Pose
Estimation in Video [75.23812405203778]
Recent solutions have been introduced to estimate 3D human pose from 2D keypoint sequence by considering body joints among all frames globally to learn-temporal correlation.
We propose Mix Mix, which has temporal transformer block to separately model the temporal motion of each joint and a transformer block inter-joint spatial correlation.
In addition, the network output is extended from the central frame to entire frames of input video, improving the coherence between the input and output benchmarks.
arXiv Detail & Related papers (2022-03-02T04:20:59Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - MotioNet: 3D Human Motion Reconstruction from Monocular Video with
Skeleton Consistency [72.82534577726334]
We introduce MotioNet, a deep neural network that directly reconstructs the motion of a 3D human skeleton from monocular video.
Our method is the first data-driven approach that directly outputs a kinematic skeleton, which is a complete, commonly used, motion representation.
arXiv Detail & Related papers (2020-06-22T08:50:09Z) - Learning 3D Human Shape and Pose from Dense Body Parts [117.46290013548533]
We propose a Decompose-and-aggregate Network (DaNet) to learn 3D human shape and pose from dense correspondences of body parts.
Messages from local streams are aggregated to enhance the robust prediction of the rotation-based poses.
Our method is validated on both indoor and real-world datasets including Human3.6M, UP3D, COCO, and 3DPW.
arXiv Detail & Related papers (2019-12-31T15:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.