Investigating how to simulate lattice gauge theories on a quantum
computer
- URL: http://arxiv.org/abs/2308.15421v1
- Date: Tue, 29 Aug 2023 16:24:44 GMT
- Title: Investigating how to simulate lattice gauge theories on a quantum
computer
- Authors: Emanuele Mendicelli
- Abstract summary: Quantum computers have the potential to expand the utility of lattice gauge theory.
We study the energy spectrum and the time evolution of an SU(2) theory using two kinds of quantum hardware.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers have the potential to expand the utility of lattice gauge
theory to investigate non-perturbative particle physics phenomena that cannot
be accessed using a standard Monte Carlo method due to the sign problem. Thanks
to the qubit, quantum computers can store Hilbert space in a more efficient way
compared to classical computers. This allows the Hamiltonian approach to be
computationally feasible, leading to absolute freedom from the sign-problem.
But what the current noisy intermediate scale quantum hardware can achieve is
under investigation, and therefore we chose to study the energy spectrum and
the time evolution of an SU(2) theory using two kinds of quantum hardware: the
D-Wave quantum annealer and the IBM gate-based quantum hardware.
Related papers
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Simulating 2D lattice gauge theories on a qudit quantum computer [2.2246996966725305]
We present a quantum computation of the properties of the basic building block of two-dimensional lattice quantum electrodynamics.
This is made possible by the use of a trapped-ion qudit quantum processor.
Qudits are ideally suited for describing gauge fields, which are naturally high-dimensional.
arXiv Detail & Related papers (2023-10-18T17:06:35Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
We propose a hybrid quantum-classical algorithm that integrates quantum computing and quantum Monte Carlo.
Our work paves the way to solving practical problems with intermediatescale and early-fault tolerant quantum computers.
arXiv Detail & Related papers (2022-06-21T14:26:24Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - SU(2) hadrons on a quantum computer [0.0]
We realize a non-Abelian gauge theory with both gauge and matter fields on a quantum computer.
This enables the observation of hadrons and the calculation of their associated masses.
arXiv Detail & Related papers (2021-02-17T18:23:34Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Light-Front Field Theory on Current Quantum Computers [0.06524460254566902]
We present a quantum algorithm for simulation of quantum field theory in the light-front formulation.
We demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics.
arXiv Detail & Related papers (2020-09-16T18:32:00Z) - Towards simulating 2D effects in lattice gauge theories on a quantum
computer [1.327151508840301]
We propose an experimental quantum simulation scheme to study ground state properties in two-dimensional quantum electrodynamics (2D QED) using existing quantum technology.
The proposal builds on a formulation of lattice gauge theories as effective spin models in arXiv:2006.14160.
We present two Variational Quantum Eigensolver (VQE) based protocols for the study of magnetic field effects, and for taking an important first step towards computing the running coupling of QED.
arXiv Detail & Related papers (2020-08-21T01:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.