論文の概要: Empirical Study of Straggler Problem in Parameter Server on Iterative
Convergent Distributed Machine Learning
- arxiv url: http://arxiv.org/abs/2308.15482v1
- Date: Fri, 28 Jul 2023 12:37:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-03 21:21:42.182731
- Title: Empirical Study of Straggler Problem in Parameter Server on Iterative
Convergent Distributed Machine Learning
- Title(参考訳): 反復収束分散機械学習におけるパラメータサーバのストラグラー問題に関する実証的研究
- Authors: Benjamin Wong
- Abstract要約: 本研究の目的は、異なる重要な反復収束機械学習(ML)アルゴリズムに対して、現在のトラグラー緩和手法の有効性を検証することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The purpose of this study is to test the effectiveness of current straggler
mitigation techniques over different important iterative convergent machine
learning(ML) algorithm including Matrix Factorization (MF), Multinomial
Logistic Regression (MLR), and Latent Dirichlet Allocation (LDA) . The
experiment was conducted to implemented using the FlexPS system, which is the
latest system implementation that employ parameter server architecture. The
experiment employed the Bulk Synchronous Parallel (BSP) computational model to
examine the straggler problem in Parameter Server on Iterative Convergent
Distributed Machine Learning. Moreover, the current research analyzes the
experimental arrangement of the parameter server strategy concerning the
parallel learning problems by injecting universal straggler patterns and
executing latest mitigation techniques. The findings of the study are
significant in that as they will provide the necessary platform for conducting
further research into the problem and allow the researcher to compare different
methods for various applications. The outcome is therefore expected to
facilitate the development of new techniques coupled with new perspectives in
addressing this problem.
- Abstract(参考訳): 本研究の目的は,MF(Matrix Factorization)やMLR(Multinomial Logistic Regression),LDA(Latent Dirichlet Allocation)など,さまざまな重要な反復収束機械学習(ML)アルゴリズムに対して,現在のトラグラー緩和手法の有効性を検証することである。
この実験は、パラメータサーバアーキテクチャを採用した最新のシステム実装であるflexpsシステムを使用して実装するために行われた。
この実験ではバルク同期並列(bsp)計算モデルを用いて,反復収束型分散機械学習におけるパラメータサーバのストラグラー問題を調べる。
さらに,本研究では,共通ストラグラーパターンを注入し,最新の緩和手法を実行することで,並列学習問題に関するパラメータサーバ戦略の実験的配置を分析する。
この研究の成果は、問題をさらなる研究を行うために必要なプラットフォームを提供し、研究者が様々な応用の異なる方法を比較することを可能にするために重要である。
したがって、この問題を解決するための新しい視点と組み合わされた新しい技術の開発を促進することが期待される。
関連論文リスト
- Active learning for regression in engineering populations: A risk-informed approach [0.0]
回帰は、データ中心のエンジニアリングアプリケーションで一般的な基本的な予測タスクである。
アクティブラーニング(英: Active Learning)は、リソース効率のよい特徴ラベルペアを優先的に取得する手法である。
提案手法は, 予測性能を維持しつつ, 必要な検査回数を削減し, 予測コストの観点から優れた性能を有することを示す。
論文 参考訳(メタデータ) (2024-09-06T15:03:42Z) - Impacts of Data Preprocessing and Hyperparameter Optimization on the Performance of Machine Learning Models Applied to Intrusion Detection Systems [0.8388591755871736]
侵入検知システム(IDS)は継続的に改善されている。
その多くは、脅威を特定するために機械学習(ML)技術を採用している。
本稿では,この研究ギャップを埋める研究について述べる。
論文 参考訳(メタデータ) (2024-07-15T14:30:25Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - A Multi-criteria Approach to Evolve Sparse Neural Architectures for
Stock Market Forecasting [0.0]
本研究は, 市場指標の移動予測のための, 効率的かつ同相なニューラルアーキテクチャを進化させる新しい枠組みを提案する。
新しい探索パラダイムである2次元スワム (2DS) が, マルチ基準ニューラルアーキテクチャサーチのために提案されている。
本研究の結果は,提案手法がより優れた一般化能力を持つ同相ネットワークを進化させることができることを示すものである。
論文 参考訳(メタデータ) (2021-11-15T19:44:10Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
モデルに依存しないメタラーニング(MAML)は、今日では最も人気があり広く採用されているメタラーニングアルゴリズムの1つである。
我々は、MAMLの動作メカニズムに対する新たな視点を提供し、以下に示すように、MAMLは、教師付きコントラスト目的関数を用いたメタラーナーに類似している。
このような干渉を軽減するため, 単純だが効果的な手法であるゼロ化手法を提案する。
論文 参考訳(メタデータ) (2021-06-29T12:52:26Z) - Decentralized Personalized Federated Learning for Min-Max Problems [79.61785798152529]
本稿では,より広い範囲の最適化問題を含むサドル点問題に対して,PFLを初めて検討した。
この問題に対処するための新しいアルゴリズムを提案し、滑らかな(強く)凸-(強く)凹点問題を理論的に解析する。
両線形問題に対する数値実験と, 対向雑音を有するニューラルネットワークは, 提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-06-14T10:36:25Z) - Analytics and Machine Learning in Vehicle Routing Research [8.524039202121974]
車両問題ルーティング(VRP)は、最も集中的に研究された最適化問題の1つです。
現実世界のVRPアプリケーションにまつわる複雑さや不確実性、ダイナミクスに対処するために、機械学習(ML)手法が使われている。
本稿では,VRP問題に対処する上で,解析手法とMLツールを組み合わせたハイブリッド手法の総合的なレビューを行う。
論文 参考訳(メタデータ) (2021-02-19T16:26:17Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
プラグイン推定と擬似出力回帰に依存する4つの幅広いメタ学習戦略を解析する。
この理論的推論を用いて、アルゴリズム設計の原則を導出し、分析を実践に翻訳する方法について強調する。
論文 参考訳(メタデータ) (2021-01-26T17:11:40Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
検証問題に基づくアルゴリズムを反復的に導入し、2つの分割戦略を探索する。
また、ニューラルネットワークの検証問題を単純化するために、ニューロンアクティベーションフェーズを利用する、高度に並列化可能な前処理アルゴリズムも導入する。
論文 参考訳(メタデータ) (2020-04-17T20:21:47Z) - Data-driven surrogate modelling and benchmarking for process equipment [1.8395181176356432]
化学プロセス機器のモデリングを目的とした計算流体力学(CFD)シミュレーションスイートを開発した。
有限関数評価予算の制約の下で,これらのCFDシミュレータをループ内での回帰型能動学習戦略について検討した。
論文 参考訳(メタデータ) (2020-03-13T18:22:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。