論文の概要: Adversarial Style Transfer for Robust Policy Optimization in Deep
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2308.15550v1
- Date: Tue, 29 Aug 2023 18:17:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-31 15:53:43.851228
- Title: Adversarial Style Transfer for Robust Policy Optimization in Deep
Reinforcement Learning
- Title(参考訳): 深層強化学習におけるロバストポリシ最適化のための逆変換
- Authors: Md Masudur Rahman and Yexiang Xue
- Abstract要約: 本稿では,特徴量に対する過度な適合を取り除き,強化学習エージェントの一般化をめざすアルゴリズムを提案する。
政策ネットワークは、そのパラメータを更新し、そのような摂動の影響を最小限に抑え、将来期待される報酬を最大化しながら頑健に維持する。
一般化とサンプル効率向上のためのProcgen and Distracting Control Suiteに対するアプローチを評価した。
- 参考スコア(独自算出の注目度): 13.652106087606471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes an algorithm that aims to improve generalization for
reinforcement learning agents by removing overfitting to confounding features.
Our approach consists of a max-min game theoretic objective. A generator
transfers the style of observation during reinforcement learning. An additional
goal of the generator is to perturb the observation, which maximizes the
agent's probability of taking a different action. In contrast, a policy network
updates its parameters to minimize the effect of such perturbations, thus
staying robust while maximizing the expected future reward. Based on this
setup, we propose a practical deep reinforcement learning algorithm,
Adversarial Robust Policy Optimization (ARPO), to find a robust policy that
generalizes to unseen environments. We evaluate our approach on Procgen and
Distracting Control Suite for generalization and sample efficiency.
Empirically, ARPO shows improved performance compared to a few baseline
algorithms, including data augmentation.
- Abstract(参考訳): 本稿では,特徴量に対する過度な適合を取り除き,強化学習エージェントの一般化をめざすアルゴリズムを提案する。
我々のアプローチはマックスミンゲーム理論の目的から成り立っている。
発電機は、強化学習中に観察スタイルを転送する。
ジェネレータのさらなる目標は観測を妨害することであり、エージェントが異なるアクションをとる確率を最大化することである。
対照的に、ポリシーネットワークは、そのような摂動の影響を最小限に抑えるためにパラメータを更新する。
そこで本研究では,実用的な深層強化学習アルゴリズムであるadversarial robust policy optimization (arpo)を提案する。
一般化とサンプル効率向上のためのProcgen and Distracting Control Suiteに対するアプローチを評価する。
経験的に、ARPOはデータ拡張を含むいくつかのベースラインアルゴリズムと比較してパフォーマンスが向上している。
関連論文リスト
- A Model-Based Approach for Improving Reinforcement Learning Efficiency
Leveraging Expert Observations [9.240917262195046]
本稿では,拡張損失関数における各成分の重みを自動的に調整するアルゴリズムを提案する。
様々な連続制御タスクの実験は、提案アルゴリズムが様々なベンチマークより優れていることを示した。
論文 参考訳(メタデータ) (2024-02-29T03:53:02Z) - Dropout Strategy in Reinforcement Learning: Limiting the Surrogate
Objective Variance in Policy Optimization Methods [0.0]
政策に基づく強化学習アルゴリズムは様々な分野で広く利用されている。
これらのアルゴリズムは、ポリシー反復に重要サンプリングを導入する。
これにより、サロゲートの目的の分散度が高くなり、アルゴリズムの安定性と収束度に間接的に影響を及ぼす。
論文 参考訳(メタデータ) (2023-10-31T11:38:26Z) - Acceleration in Policy Optimization [50.323182853069184]
我々は、楽観的かつ適応的な更新を通じて、政策改善のステップにフォレストを組み込むことにより、強化学習(RL)における政策最適化手法を加速するための統一パラダイムに向けて研究する。
我々は、楽観主義を、政策の将来行動の予測モデルとして定義し、適応性は、過度な予測や変化に対する遅延反応からエラーを軽減するために、即時かつ予測的な修正措置をとるものである。
我々は,メタグラディエント学習による適応型楽観的ポリシー勾配アルゴリズムを設計し,実証的なタスクにおいて,加速度に関連するいくつかの設計選択を実証的に強調する。
論文 参考訳(メタデータ) (2023-06-18T15:50:57Z) - Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
本稿では,各エージェントのローカルポリシーをバニラPPOと同様に更新するマルチエージェントPPOアルゴリズムを提案する。
マルコフゲームにおける標準正則条件と問題依存量により、我々のアルゴリズムはサブリニアレートで大域的最適ポリシーに収束することを示す。
論文 参考訳(メタデータ) (2023-05-08T16:20:03Z) - Adversarial Policy Optimization in Deep Reinforcement Learning [16.999444076456268]
ディープニューラルネットワークで表されるポリシーは過度に適合し、強化学習エージェントが効果的なポリシーを学ぶのを妨げます。
データ拡張は、オーバーフィッティングの効果を軽減し、RLエージェントのパフォーマンスを高めることができる。
本稿では、上記の問題を緩和し、学習ポリシーの効率を向上させるための新しいRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-27T21:01:08Z) - Robust Policy Optimization in Deep Reinforcement Learning [16.999444076456268]
連続的な行動領域では、パラメータ化された行動分布は容易に探索の制御を可能にする。
特に,摂動分布を利用したロバストポリシ最適化(RPO)アルゴリズムを提案する。
我々は,DeepMind Control,OpenAI Gym,Pybullet,IsaacGymの各種連続制御タスクについて評価を行った。
論文 参考訳(メタデータ) (2022-12-14T22:43:56Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
我々は、期待される性能とリスクのバランスをとるために、新しいポリシー勾配スタイルのロバスト最適化手法PG-BROILを導出する。
その結果,PG-BROILはリスクニュートラルからリスク・アバースまでの行動のファミリを創出できる可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-11T16:49:15Z) - Generative Actor-Critic: An Off-policy Algorithm Using the Push-forward
Model [24.030426634281643]
連続制御タスクでは、ガウス分布を用いた広く使われているポリシーは、環境の非効率な探索をもたらす。
本稿では,ポリシの表現性を高めるためにプッシュフォワードモデルを用いて,密度のないオフポリチックアルゴリズムGenerative Actor-Criticを提案する。
プッシュフォワードポリシには,マルチモーダリティなどの望ましい特徴があり,アルゴリズムの探索と性能を向上できることを示す。
論文 参考訳(メタデータ) (2021-05-08T16:29:20Z) - Iterative Amortized Policy Optimization [147.63129234446197]
政策ネットワークは、継続的制御のための深層強化学習(RL)アルゴリズムの中心的な特徴である。
変分推論の観点からは、ポリシーネットワークは、ポリシー分布を直接ではなく、ネットワークパラメータを最適化する、テキスト化最適化の一形態である。
我々は,反復的アモート化ポリシ最適化により,ベンチマーク連続制御タスクの直接アモート化よりも性能が向上することが実証された。
論文 参考訳(メタデータ) (2020-10-20T23:25:42Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。