Efficient and Explainable Graph Neural Architecture Search via
Monte-Carlo Tree Search
- URL: http://arxiv.org/abs/2308.15734v2
- Date: Fri, 1 Sep 2023 01:10:06 GMT
- Title: Efficient and Explainable Graph Neural Architecture Search via
Monte-Carlo Tree Search
- Authors: Yuya Sasaki
- Abstract summary: Graph neural networks (GNNs) are powerful tools for performing data science tasks in various domains.
To save human efforts and computational costs, graph neural architecture search (Graph NAS) has been used to search for a sub-optimal GNN architecture.
We propose ExGNAS, which consists of (i) a simple search space that can adapt to various graphs and (ii) a search algorithm that makes the decision process explainable.
- Score: 5.076419064097733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) are powerful tools for performing data science
tasks in various domains. Although we use GNNs in wide application scenarios,
it is a laborious task for researchers and practitioners to design/select
optimal GNN architectures in diverse graphs. To save human efforts and
computational costs, graph neural architecture search (Graph NAS) has been used
to search for a sub-optimal GNN architecture that combines existing components.
However, there are no existing Graph NAS methods that satisfy explainability,
efficiency, and adaptability to various graphs. Therefore, we propose an
efficient and explainable Graph NAS method, called ExGNAS, which consists of
(i) a simple search space that can adapt to various graphs and (ii) a search
algorithm that makes the decision process explainable. The search space
includes only fundamental functions that can handle homophilic and heterophilic
graphs. The search algorithm efficiently searches for the best GNN architecture
via Monte-Carlo tree search without neural models. The combination of our
search space and algorithm achieves finding accurate GNN models and the
important functions within the search space. We comprehensively evaluate our
method compared with twelve hand-crafted GNN architectures and three Graph NAS
methods in four graphs. Our experimental results show that ExGNAS increases AUC
up to 3.6 and reduces run time up to 78\% compared with the state-of-the-art
Graph NAS methods. Furthermore, we show ExGNAS is effective in analyzing the
difference between GNN architectures in homophilic and heterophilic graphs.
Related papers
- Towards Lightweight Graph Neural Network Search with Curriculum Graph Sparsification [48.334100429553644]
This paper proposes to design a joint graph data and architecture mechanism, which identifies important sub-architectures via the valuable graph data.
To search for optimal lightweight Graph Neural Networks (GNNs), we propose a Lightweight Graph Neural Architecture Search with Graph SparsIfication and Network Pruning (GASSIP) method.
Our method achieves on-par or even higher node classification performance with half or fewer model parameters of searched GNNs and a sparser graph.
arXiv Detail & Related papers (2024-06-24T06:53:37Z) - GraphPNAS: Learning Distribution of Good Neural Architectures via Deep
Graph Generative Models [48.57083463364353]
We study neural architecture search (NAS) through the lens of learning random graph models.
We propose GraphPNAS a deep graph generative model that learns a distribution of well-performing architectures.
We show that our proposed graph generator consistently outperforms RNN-based one and achieves better or comparable performances than state-of-the-art NAS methods.
arXiv Detail & Related papers (2022-11-28T09:09:06Z) - NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search [55.75621026447599]
We propose NAS-Bench-Graph, a tailored benchmark that supports unified, reproducible, and efficient evaluations for GraphNAS.
Specifically, we construct a unified, expressive yet compact search space, covering 26,206 unique graph neural network (GNN) architectures.
Based on our proposed benchmark, the performance of GNN architectures can be directly obtained by a look-up table without any further computation.
arXiv Detail & Related papers (2022-06-18T10:17:15Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Edge-featured Graph Neural Architecture Search [131.4361207769865]
We propose Edge-featured Graph Neural Architecture Search to find the optimal GNN architecture.
Specifically, we design rich entity and edge updating operations to learn high-order representations.
We show EGNAS can search better GNNs with higher performance than current state-of-the-art human-designed and searched-based GNNs.
arXiv Detail & Related papers (2021-09-03T07:53:18Z) - Search to aggregate neighborhood for graph neural network [47.47628113034479]
We propose a framework, which tries to Search to Aggregate NEighborhood (SANE) to automatically design data-specific GNN architectures.
By designing a novel and expressive search space, we propose a differentiable search algorithm, which is more efficient than previous reinforcement learning based methods.
arXiv Detail & Related papers (2021-04-14T03:15:19Z) - Rethinking Graph Neural Network Search from Message-passing [120.62373472087651]
This paper proposes Graph Neural Architecture Search (GNAS) with novel-designed search space.
We design Graph Neural Architecture Paradigm (GAP) with tree-topology computation procedure and two types of fine-grained atomic operations.
Experiments show that our GNAS can search for better GNNs with multiple message-passing mechanisms and optimal message-passing depth.
arXiv Detail & Related papers (2021-03-26T06:10:41Z) - Simplifying Architecture Search for Graph Neural Network [38.45540097927176]
We propose SNAG framework, consisting of a novel search space and a reinforcement learning based search algorithm.
Experiments on real-world datasets demonstrate the effectiveness of SNAG framework compared to human-designed GNNs and NAS methods.
arXiv Detail & Related papers (2020-08-26T16:24:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.