論文の概要: Knowledge-grounded Natural Language Recommendation Explanation
- arxiv url: http://arxiv.org/abs/2308.15813v1
- Date: Wed, 30 Aug 2023 07:36:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-31 14:32:34.307477
- Title: Knowledge-grounded Natural Language Recommendation Explanation
- Title(参考訳): 知識に基づく自然言語推薦説明
- Authors: Anthony Colas, Jun Araki, Zhengyu Zhou, Bingqing Wang, Zhe Feng
- Abstract要約: 自然言語の説明可能なレコメンデーションに対する知識グラフ(KG)アプローチを提案する。
提案手法は,新しいコラボレーティブフィルタリングに基づくKG表現により,ユーザイテムの特徴を引き出す。
実験結果から,提案手法は,従来の自然言語説明推薦モデルよりも一貫して優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 11.58207109487333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explanations accompanied by a recommendation can assist users in
understanding the decision made by recommendation systems, which in turn
increases a user's confidence and trust in the system. Recently, research has
focused on generating natural language explanations in a human-readable format.
Thus far, the proposed approaches leverage item reviews written by users, which
are often subjective, sparse in language, and unable to account for new items
that have not been purchased or reviewed before. Instead, we aim to generate
fact-grounded recommendation explanations that are objectively described with
item features while implicitly considering a user's preferences, based on the
user's purchase history. To achieve this, we propose a knowledge graph (KG)
approach to natural language explainable recommendation. Our approach draws on
user-item features through a novel collaborative filtering-based KG
representation to produce fact-grounded, personalized explanations, while
jointly learning user-item representations for recommendation scoring.
Experimental results show that our approach consistently outperforms previous
state-of-the-art models on natural language explainable recommendation.
- Abstract(参考訳): レコメンデーションを伴う説明は、レコメンデーションシステムによる決定を理解するのに役立ち、それによってユーザの信頼とシステムに対する信頼を高める。
近年,自然言語を人間が読める形式に生成する研究が進んでいる。
提案手法は, 利用者が作成した項目レビューを利用しており, しばしば主観的であり, 言語的にも疎外であり, 購入やレビューをしていない項目を考慮できない。
代わりに,ユーザの購入履歴に基づいてユーザの嗜好を暗黙的に考慮しながら,アイテムの特徴を客観的に記述した,事実に基づく推奨説明の生成を目指す。
そこで本研究では,自然言語の説明可能な推奨に対する知識グラフ(KG)アプローチを提案する。
提案手法は,協調フィルタリングに基づく新規なKG表現を用いて,ファクトグラウンドでパーソナライズされた説明文を生成するとともに,レコメンデーションスコアのためのユーザイテム表現を共同学習する。
実験結果から,提案手法は,従来の自然言語解説モデルよりもずっと優れていることがわかった。
関連論文リスト
- Language Representations Can be What Recommenders Need: Findings and Potentials [57.90679739598295]
先進的なLM表現から線形にマッピングされた項目表現は、より優れたレコメンデーション性能が得られることを示す。
この結果は、先進言語表現空間と効果的な項目表現空間との同型性を示唆している。
本研究は,自然言語処理とリコメンデーションシステムコミュニティの両方に刺激を与える言語モデリングと行動モデリングの関連性を強調した。
論文 参考訳(メタデータ) (2024-07-07T17:05:24Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
説明ジェネレータを最近登場した大規模言語モデル(LLM)に置き換える影響は、まだ不明である。
本研究では,シンプルで効果的な2段階説明可能なレコメンデーションフレームワークであるLLMXRecを提案する。
いくつかの重要な微調整技術を採用することで、制御可能で流動的な説明が十分に生成できる。
論文 参考訳(メタデータ) (2023-12-25T09:09:54Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
本稿では,対話型推薦システムのためのエンティティの意味理解を改善するために,知識強化型エンティティ表現学習(KERL)フレームワークを紹介する。
KERLは知識グラフと事前訓練された言語モデルを使用して、エンティティの意味的理解を改善する。
KERLはレコメンデーションとレスポンス生成の両方のタスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-12-18T06:41:23Z) - Reformulating Sequential Recommendation: Learning Dynamic User Interest with Content-enriched Language Modeling [18.297332953450514]
本稿では、事前学習した言語モデルの意味理解機能を活用してパーソナライズされたレコメンデーションを生成するLANCERを提案する。
我々のアプローチは、言語モデルとレコメンデーションシステムの間のギャップを埋め、より人間的なレコメンデーションを生み出します。
論文 参考訳(メタデータ) (2023-09-19T08:54:47Z) - Recommendation as Instruction Following: A Large Language Model
Empowered Recommendation Approach [83.62750225073341]
我々は、大規模言語モデル(LLM)による指示としてレコメンデーションを考える。
まず、ユーザの好み、意図、タスクフォーム、コンテキストを自然言語で記述するための一般的な命令形式を設計する。
そして、39の命令テンプレートを手動で設計し、大量のユーザ個人化された命令データを自動的に生成する。
論文 参考訳(メタデータ) (2023-05-11T17:39:07Z) - Explainable Recommender with Geometric Information Bottleneck [25.703872435370585]
本稿では,ユーザ-イテム相互作用から学習した幾何学的事前学習を変分ネットワークに組み込むことを提案する。
個々のユーザとイテムペアからの遅延因子は、レコメンデーションと説明生成の両方に使用することができる。
3つの電子商取引データセットの実験結果から,我々のモデルは変分レコメンデータの解釈可能性を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-05-09T10:38:36Z) - Graph-based Extractive Explainer for Recommendations [38.278148661173525]
ユーザ,項目,属性,文をシームレスに統合し,抽出に基づく説明を行うグラフ注意型ニューラルネットワークモデルを開発した。
個々の文の関連性, 属性カバレッジ, 内容冗長性のバランスをとるために, 整数線形プログラミング問題を解くことにより, 文の最終的な選択を行う。
論文 参考訳(メタデータ) (2022-02-20T04:56:10Z) - Discovering Personalized Semantics for Soft Attributes in Recommender
Systems using Concept Activation Vectors [34.56323846959459]
インタラクティブなレコメンデータシステムは、ユーザがよりリッチな方法で意図、好み、制約、コンテキストを表現することを可能にする。
課題の1つは、ユーザのセマンティックな意図を、しばしば望ましい項目を記述するために使用されるオープンエンドの用語や属性から推測することである。
このような属性のセマンティクスを捉える表現を学習し、それをレコメンデーションシステムにおけるユーザの好みや行動に結びつけるためのフレームワークを開発する。
論文 参考訳(メタデータ) (2022-02-06T18:45:15Z) - Generate Natural Language Explanations for Recommendation [25.670144526037134]
パーソナライズドレコメンデーションのために,フリーテキストの自然言語説明を作成することを提案する。
特に,パーソナライズされた説明生成のための階層型シーケンス・ツー・シーケンスモデル(hss)を提案する。
論文 参考訳(メタデータ) (2021-01-09T17:00:41Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z) - A Neural Topical Expansion Framework for Unstructured Persona-oriented
Dialogue Generation [52.743311026230714]
Persona Exploration and Exploitation (PEE)は、事前に定義されたユーザペルソナ記述を意味論的に相関したコンテンツで拡張することができる。
PEEはペルソナ探索とペルソナ搾取という2つの主要なモジュールで構成されている。
提案手法は, 自動評価と人的評価の両面で, 最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-02-06T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。