Depth analysis of battery performance based on a data-driven approach
- URL: http://arxiv.org/abs/2308.15833v1
- Date: Wed, 30 Aug 2023 08:15:27 GMT
- Title: Depth analysis of battery performance based on a data-driven approach
- Authors: Zhen Zhang and Hongrui Sun and Hui Sun
- Abstract summary: Capacity attenuation is one of the most intractable issues in the current of application of the cells.
Capacity change of the cell throughout the cycle is predicted using machine learning technology.
- Score: 5.778648596769691
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Capacity attenuation is one of the most intractable issues in the current of
application of the cells. The disintegration mechanism is well known to be very
complex across the system. It is a great challenge to fully comprehend this
process and predict the process accurately. Thus, the machine learning (ML)
technology is employed to predict the specific capacity change of the cell
throughout the cycle and grasp this intricate procedure. Different from the
previous work, according to the WOA-ELM model proposed in this work (R2 =
0.9999871), the key factors affecting the specific capacity of the battery are
determined, and the defects in the machine learning black box are overcome by
the interpretable model. Their connection with the structural damage of
electrode materials and battery failure during battery cycling is
comprehensively explained, revealing their essentiality to battery performance,
which is conducive to superior research on contemporary batteries and
modification.
Related papers
- Cycle Life Prediction for Lithium-ion Batteries: Machine Learning and More [0.0]
Batteries are dynamic systems with complicated nonlinear aging.
This tutorial begins with an overview of first-principles, machine learning, and hybrid battery models.
We highlight the challenges of machine learning models, motivating the incorporation of physics in hybrid modeling approaches.
arXiv Detail & Related papers (2024-04-05T12:05:20Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - A Mapping Study of Machine Learning Methods for Remaining Useful Life
Estimation of Lead-Acid Batteries [0.0]
State of Health (SoH) and Remaining Useful Life (RUL) contribute to enhancing predictive maintenance, reliability, and longevity of battery systems.
This paper presents a mapping study of the state-of-the-art in machine learning methods for estimating the SoH and RUL of lead-acid batteries.
arXiv Detail & Related papers (2023-07-11T10:41:41Z) - Toward High-Performance Energy and Power Battery Cells with Machine
Learning-based Optimization of Electrode Manufacturing [61.27691515336054]
In this study, we tackle the issue of high-performance electrodes for desired battery application conditions.
We propose a powerful data-driven approach supported by a deterministic machine learning (ML)-assisted pipeline for bi-objective optimization of the electrochemical performance.
Our results suggested a high amount of active material, combined with intermediate values of solid content in the slurry and calendering degree, to achieve the optimal electrodes.
arXiv Detail & Related papers (2023-07-07T13:48:50Z) - Adaptive Planning Search Algorithm for Analog Circuit Verification [53.97809573610992]
We propose a machine learning (ML) approach, which uses less simulations.
We show that the proposed approach is able to provide OCCs closer to the specifications for all circuits.
arXiv Detail & Related papers (2023-06-23T12:57:46Z) - Dynaformer: A Deep Learning Model for Ageing-aware Battery Discharge
Prediction [2.670887944566458]
We introduce a novel Transformer-based deep learning architecture which is able to simultaneously infer the ageing state from a limited number of voltage/current samples.
Our experiments show that the trained model is effective for input current profiles of different complexities and is robust to a wide range of degradation levels.
arXiv Detail & Related papers (2022-06-01T15:31:06Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Simple statistical models and sequential deep learning for Lithium-ion
batteries degradation under dynamic conditions: Fractional Polynomials vs
Neural Networks [1.8899300124593648]
Longevity and safety of Lithium-ion batteries are facilitated by efficient monitoring and adjustment of the battery operating conditions.
It is crucial to implement fast and accurate algorithms for State of Health (SoH) monitoring on the Battery Management System.
This paper proposes and compares two data-driven approaches: a Long Short-Term Memory neural network, and a Multivariable Fractional Polynomial regression.
arXiv Detail & Related papers (2021-02-16T12:26:23Z) - Modified Gaussian Process Regression Models for Cyclic Capacity
Prediction of Lithium-ion Batteries [5.663192900261267]
This paper presents the development of machine learning-enabled data-driven models for capacity predictions for lithium-ion batteries.
The developed models are validated compared on the Nickel Manganese Oxide (MCN) lithium-ion batteries with various cycling patterns.
arXiv Detail & Related papers (2020-12-31T19:05:27Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
We build a Deep Forward Network for a lithium-ion battery and its performance assessment.
The contribution of this work is to present a methodology of building a Deep Forward Network for a lithium-ion battery and its performance assessment.
arXiv Detail & Related papers (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.