Attention-based CT Scan Interpolation for Lesion Segmentation of
Colorectal Liver Metastases
- URL: http://arxiv.org/abs/2308.15932v1
- Date: Wed, 30 Aug 2023 10:21:57 GMT
- Title: Attention-based CT Scan Interpolation for Lesion Segmentation of
Colorectal Liver Metastases
- Authors: Mohammad Hamghalam, Richard K. G. Do, and Amber L. Simpson
- Abstract summary: Small liver lesions common to colorectal liver (CRLMs) are challenging for convolutional neural network (CNN) segmentation models.
We propose an unsupervised attention-based model to generate intermediate slices from consecutive triplet slices in CT scans.
Our model's outputs are consistent with the original input slices while increasing the segmentation performance in two cutting-edge 3D segmentation pipelines.
- Score: 2.680862925538592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Small liver lesions common to colorectal liver metastases (CRLMs) are
challenging for convolutional neural network (CNN) segmentation models,
especially when we have a wide range of slice thicknesses in the computed
tomography (CT) scans. Slice thickness of CT images may vary by clinical
indication. For example, thinner slices are used for presurgical planning when
fine anatomic details of small vessels are required. While keeping the
effective radiation dose in patients as low as possible, various slice
thicknesses are employed in CRLMs due to their limitations. However,
differences in slice thickness across CTs lead to significant performance
degradation in CT segmentation models based on CNNs. This paper proposes a
novel unsupervised attention-based interpolation model to generate intermediate
slices from consecutive triplet slices in CT scans. We integrate segmentation
loss during the interpolation model's training to leverage segmentation labels
in existing slices to generate middle ones. Unlike common interpolation
techniques in CT volumes, our model highlights the regions of interest (liver
and lesions) inside the abdominal CT scans in the interpolated slice. Moreover,
our model's outputs are consistent with the original input slices while
increasing the segmentation performance in two cutting-edge 3D segmentation
pipelines. We tested the proposed model on the CRLM dataset to upsample
subjects with thick slices and create isotropic volume for our segmentation
model. The produced isotropic dataset increases the Dice score in the
segmentation of lesions and outperforms other interpolation approaches in terms
of interpolation metrics.
Related papers
- Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Anatomically constrained CT image translation for heterogeneous blood
vessel segmentation [3.88838725116957]
Anatomical structures in contrast-enhanced CT (ceCT) images can be challenging to segment due to variability in contrast medium diffusion.
To limit the radiation dose, generative models could be used to synthesize one modality, instead of acquiring it.
CycleGAN has attracted particular attention because it alleviates the need for paired data.
We present an extension of CycleGAN to generate high fidelity images, with good structural consistency.
arXiv Detail & Related papers (2022-10-04T16:14:49Z) - SD-LayerNet: Semi-supervised retinal layer segmentation in OCT using
disentangled representation with anatomical priors [4.2663199451998475]
We introduce a semi-supervised paradigm into the retinal layer segmentation task.
In particular, a novel fully differentiable approach is used for converting surface position regression into a pixel-wise structured segmentation.
In parallel, we propose a set of anatomical priors to improve network training when a limited amount of labeled data is available.
arXiv Detail & Related papers (2022-07-01T14:30:59Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
The identification of retinal layer thicknesses serves as an essential task be done for each patient separately.
The elaboration of automated segmentation models has become an important task in the field of medical image processing.
We propose a novel, purely data driven textitgeometric approach to order-constrained 3D OCT retinal cell layer segmentation
arXiv Detail & Related papers (2020-09-10T01:57:53Z) - Implanting Synthetic Lesions for Improving Liver Lesion Segmentation in
CT Exams [0.0]
We present a method for implanting realistic lesions in CT slices to provide a rich and controllable set of training samples.
We conclude that increasing the variability of lesions synthetically in terms of size, density, shape, and position seems to improve the performance of segmentation models for liver lesion segmentation in CT slices.
arXiv Detail & Related papers (2020-08-11T13:23:04Z) - A$^3$DSegNet: Anatomy-aware artifact disentanglement and segmentation
network for unpaired segmentation, artifact reduction, and modality
translation [18.500206499468902]
CBCT images are of low-quality and artifact-laden due to noise, poor tissue contrast, and the presence of metallic objects.
There exists a wealth of artifact-free, high quality CT images with vertebra annotations.
This motivates us to build a CBCT vertebra segmentation model using unpaired CT images with annotations.
arXiv Detail & Related papers (2020-01-02T06:37:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.