Stage-by-stage Wavelet Optimization Refinement Diffusion Model for
Sparse-View CT Reconstruction
- URL: http://arxiv.org/abs/2308.15942v2
- Date: Sun, 3 Sep 2023 10:17:17 GMT
- Title: Stage-by-stage Wavelet Optimization Refinement Diffusion Model for
Sparse-View CT Reconstruction
- Authors: Kai Xu, Shiyu Lu, Bin Huang, Weiwen Wu, Qiegen Liu
- Abstract summary: We present an innovative approach named the Stage-by-stage Wavelet Optimization Refinement Diffusion (SWORD) model for sparse-view CT reconstruction.
Specifically, we establish a unified mathematical model integrating low-frequency and high-frequency generative models, achieving the solution with optimization procedure.
Our method rooted in established optimization theory, comprising three distinct stages, including low-frequency generation, high-frequency refinement and domain transform.
- Score: 14.037398189132468
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have emerged as potential tools to tackle the challenge of
sparse-view CT reconstruction, displaying superior performance compared to
conventional methods. Nevertheless, these prevailing diffusion models
predominantly focus on the sinogram or image domains, which can lead to
instability during model training, potentially culminating in convergence
towards local minimal solutions. The wavelet trans-form serves to disentangle
image contents and features into distinct frequency-component bands at varying
scales, adeptly capturing diverse directional structures. Employing the Wavelet
transform as a guiding sparsity prior significantly enhances the robustness of
diffusion models. In this study, we present an innovative approach named the
Stage-by-stage Wavelet Optimization Refinement Diffusion (SWORD) model for
sparse-view CT reconstruction. Specifically, we establish a unified
mathematical model integrating low-frequency and high-frequency generative
models, achieving the solution with optimization procedure. Furthermore, we
perform the low-frequency and high-frequency generative models on wavelet's
decomposed components rather than sinogram or image domains, ensuring the
stability of model training. Our method rooted in established optimization
theory, comprising three distinct stages, including low-frequency generation,
high-frequency refinement and domain transform. Our experimental results
demonstrate that the proposed method outperforms existing state-of-the-art
methods both quantitatively and qualitatively.
Related papers
- Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - Sequential Posterior Sampling with Diffusion Models [15.028061496012924]
We propose a novel approach that models the transition dynamics to improve the efficiency of sequential diffusion posterior sampling in conditional image synthesis.
We demonstrate the effectiveness of our approach on a real-world dataset of high frame rate cardiac ultrasound images.
Our method opens up new possibilities for real-time applications of diffusion models in imaging and other domains requiring real-time inference.
arXiv Detail & Related papers (2024-09-09T07:55:59Z) - Multi-scale Conditional Generative Modeling for Microscopic Image Restoration [9.345394120765123]
We introduce a multi-scale generative model that enhances conditional image restoration through a novel exploitation of the Brownian Bridge process within wavelet domain.
Our method provides significant acceleration during training and sampling while sustaining a high image generation quality and diversity on par with SOTA diffusion models.
This pioneering technique offers an efficient image restoration framework that harmonizes efficiency with quality, signifying a major stride in incorporating cutting-edge generative models into computational microscopy.
arXiv Detail & Related papers (2024-07-07T05:11:00Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - A prior regularized full waveform inversion using generative diffusion
models [0.5156484100374059]
Full waveform inversion (FWI) has the potential to provide high-resolution subsurface model estimations.
Due to limitations in observation, e.g., regional noise, limited shots or receivers, and band-limited data, it is hard to obtain the desired high-resolution model with FWI.
We propose a new paradigm for FWI regularized by generative diffusion models.
arXiv Detail & Related papers (2023-06-22T10:10:34Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - WaveDM: Wavelet-Based Diffusion Models for Image Restoration [43.254438752311714]
Wavelet-Based Diffusion Model (WaveDM) learns the distribution of clean images in the wavelet domain conditioned on the wavelet spectrum of degraded images after wavelet transform.
WaveDM achieves state-of-the-art performance with the efficiency that is comparable to traditional one-pass methods.
arXiv Detail & Related papers (2023-05-23T08:41:04Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.