A Hybrid Wavelet-Fourier Method for Next-Generation Conditional Diffusion Models
- URL: http://arxiv.org/abs/2504.03821v1
- Date: Fri, 04 Apr 2025 17:11:04 GMT
- Title: A Hybrid Wavelet-Fourier Method for Next-Generation Conditional Diffusion Models
- Authors: Andrew Kiruluta, Andreas Lemos,
- Abstract summary: We present a novel generative modeling framework,Wavelet-Fourier-Diffusion, which adapts the diffusion paradigm to hybrid frequency representations.<n>We show how the hybrid frequency-based representation improves control over global coherence and fine texture synthesis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel generative modeling framework,Wavelet-Fourier-Diffusion, which adapts the diffusion paradigm to hybrid frequency representations in order to synthesize high-quality, high-fidelity images with improved spatial localization. In contrast to conventional diffusion models that rely exclusively on additive noise in pixel space, our approach leverages a multi-transform that combines wavelet sub-band decomposition with partial Fourier steps. This strategy progressively degrades and then reconstructs images in a hybrid spectral domain during the forward and reverse diffusion processes. By supplementing traditional Fourier-based analysis with the spatial localization capabilities of wavelets, our model can capture both global structures and fine-grained features more effectively. We further extend the approach to conditional image generation by integrating embeddings or conditional features via cross-attention. Experimental evaluations on CIFAR-10, CelebA-HQ, and a conditional ImageNet subset illustrate that our method achieves competitive or superior performance relative to baseline diffusion models and state-of-the-art GANs, as measured by Fr\'echet Inception Distance (FID) and Inception Score (IS). We also show how the hybrid frequency-based representation improves control over global coherence and fine texture synthesis, paving the way for new directions in multi-scale generative modeling.
Related papers
- Arbitrary-steps Image Super-resolution via Diffusion Inversion [68.78628844966019]
This study presents a new image super-resolution (SR) technique based on diffusion inversion, aiming at harnessing the rich image priors encapsulated in large pre-trained diffusion models to improve SR performance.
We design a Partial noise Prediction strategy to construct an intermediate state of the diffusion model, which serves as the starting sampling point.
Once trained, this noise predictor can be used to initialize the sampling process partially along the diffusion trajectory, generating the desirable high-resolution result.
arXiv Detail & Related papers (2024-12-12T07:24:13Z) - Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
We show that a fixed-point-inspired iterative approach to invert real-world images does not achieve convergence, instead oscillating between distinct clusters.
We introduce a simple and fast distribution transfer technique that facilitates image enhancement, stroke-based recoloring, as well as visual prompt-guided image editing.
arXiv Detail & Related papers (2024-11-17T17:45:37Z) - Edge-preserving noise for diffusion models [4.435514696080208]
We present a novel edge-preserving diffusion model that is a generalization of denoising diffusion probablistic models (DDPM)
In particular, we introduce an edge-aware noise scheduler that varies between edge-preserving and isotropic Gaussian noise.
We show that our model's generative process converges faster to results that more closely match the target distribution.
arXiv Detail & Related papers (2024-10-02T13:29:52Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - Sequential Posterior Sampling with Diffusion Models [15.028061496012924]
We propose a novel approach that models the transition dynamics to improve the efficiency of sequential diffusion posterior sampling in conditional image synthesis.
We demonstrate the effectiveness of our approach on a real-world dataset of high frame rate cardiac ultrasound images.
Our method opens up new possibilities for real-time applications of diffusion models in imaging and other domains requiring real-time inference.
arXiv Detail & Related papers (2024-09-09T07:55:59Z) - A Dual Domain Multi-exposure Image Fusion Network based on the
Spatial-Frequency Integration [57.14745782076976]
Multi-exposure image fusion aims to generate a single high-dynamic image by integrating images with different exposures.
We propose a novelty perspective on multi-exposure image fusion via the Spatial-Frequency Integration Framework, named MEF-SFI.
Our method achieves visual-appealing fusion results against state-of-the-art multi-exposure image fusion approaches.
arXiv Detail & Related papers (2023-12-17T04:45:15Z) - DiffSCI: Zero-Shot Snapshot Compressive Imaging via Iterative Spectral
Diffusion Model [18.25548360119976]
This paper endeavors to advance the precision of snapshot compressive imaging (SCI) reconstruction for multispectral image (MSI)
We propose a novel structured zero-shot diffusion model, dubbed DiffSCI.
We present extensive testing to show that DiffSCI exhibits discernible performance enhancements over prevailing self-supervised and zero-shot approaches.
arXiv Detail & Related papers (2023-11-19T20:27:14Z) - Stage-by-stage Wavelet Optimization Refinement Diffusion Model for
Sparse-View CT Reconstruction [14.037398189132468]
We present an innovative approach named the Stage-by-stage Wavelet Optimization Refinement Diffusion (SWORD) model for sparse-view CT reconstruction.
Specifically, we establish a unified mathematical model integrating low-frequency and high-frequency generative models, achieving the solution with optimization procedure.
Our method rooted in established optimization theory, comprising three distinct stages, including low-frequency generation, high-frequency refinement and domain transform.
arXiv Detail & Related papers (2023-08-30T10:48:53Z) - Frequency Compensated Diffusion Model for Real-scene Dehazing [6.105813272271171]
We consider a dehazing framework based on conditional diffusion models for improved generalization to real haze.
The proposed dehazing diffusion model significantly outperforms state-of-the-art methods on real-world images.
arXiv Detail & Related papers (2023-08-21T06:50:44Z) - Real-World Image Variation by Aligning Diffusion Inversion Chain [53.772004619296794]
A domain gap exists between generated images and real-world images, which poses a challenge in generating high-quality variations of real-world images.
We propose a novel inference pipeline called Real-world Image Variation by ALignment (RIVAL)
Our pipeline enhances the generation quality of image variations by aligning the image generation process to the source image's inversion chain.
arXiv Detail & Related papers (2023-05-30T04:09:47Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.