論文の概要: Latency-aware Unified Dynamic Networks for Efficient Image Recognition
- arxiv url: http://arxiv.org/abs/2308.15949v3
- Date: Tue, 20 Feb 2024 12:36:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-21 21:06:25.308930
- Title: Latency-aware Unified Dynamic Networks for Efficient Image Recognition
- Title(参考訳): 効率的な画像認識のためのレイテンシアウェア統一動的ネットワーク
- Authors: Yizeng Han, Zeyu Liu, Zhihang Yuan, Yifan Pu, Chaofei Wang, Shiji
Song, Gao Huang
- Abstract要約: LAUDNetは動的ネットワークの理論的および実用的な効率ギャップを橋渡しするフレームワークである。
3つの主要な動的パラダイム - 適応型計算、動的層スキップ、動的チャネルスキップ - を統合している。
これにより、V100,3090やTX2 GPUのようなプラットフォーム上で、ResNetのようなモデルの遅延を50%以上削減できる。
- 参考スコア(独自算出の注目度): 72.8951331472913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic computation has emerged as a promising avenue to enhance the
inference efficiency of deep networks. It allows selective activation of
computational units, leading to a reduction in unnecessary computations for
each input sample. However, the actual efficiency of these dynamic models can
deviate from theoretical predictions. This mismatch arises from: 1) the lack of
a unified approach due to fragmented research; 2) the focus on algorithm design
over critical scheduling strategies, especially in CUDA-enabled GPU contexts;
and 3) challenges in measuring practical latency, given that most libraries
cater to static operations. Addressing these issues, we unveil the
Latency-Aware Unified Dynamic Networks (LAUDNet), a framework that integrates
three primary dynamic paradigms-spatially adaptive computation, dynamic layer
skipping, and dynamic channel skipping. To bridge the theoretical and practical
efficiency gap, LAUDNet merges algorithmic design with scheduling optimization,
guided by a latency predictor that accurately gauges dynamic operator latency.
We've tested LAUDNet across multiple vision tasks, demonstrating its capacity
to notably reduce the latency of models like ResNet-101 by over 50% on
platforms such as V100, RTX3090, and TX2 GPUs. Notably, LAUDNet stands out in
balancing accuracy and efficiency. Code is available at:
https://www.github.com/LeapLabTHU/LAUDNet.
- Abstract(参考訳): 動的計算は深層ネットワークの推論効率を高めるための有望な道として登場した。
計算ユニットの選択的活性化を可能にし、各入力サンプルに対する不要な計算の削減につながる。
しかし、これらの動的モデルの実際の効率は理論的予測から逸脱することができる。
このミスマッチは:
1) 断片化研究による統一的アプローチの欠如
2) 重要なスケジューリング戦略,特にCUDA対応GPUコンテキストにおけるアルゴリズム設計に焦点を当てる。
3) ほとんどのライブラリが静的操作に対応しているため,実用的レイテンシを測定する上での課題がある。
これらの問題に対処するために,我々は,3つの主要な動的パラダイム(分散適応計算,動的層スキップ,動的チャネルスキップ)を統合するフレームワークであるlaudnet( latency-aware unified dynamic networks)を発表した。
理論的および実用的な効率ギャップを埋めるため、LAUDNetはアルゴリズム設計とスケジューリング最適化をマージし、動的演算子の遅延を正確に測定する遅延予測器によって導かれる。
LAUDNetを複数のビジョンタスクでテストし、V100やRTX3090、TX2 GPUといったプラットフォーム上で、ResNet-101のようなモデルの遅延を50%以上削減する能力を示しています。
特に、LAUDNetは精度と効率のバランスで際立っている。
コードは、https://www.github.com/LeapLabTHU/LAUDNetで入手できる。
関連論文リスト
- Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - Efficient Latency-Aware CNN Depth Compression via Two-Stage Dynamic
Programming [15.458305667190256]
本稿では,一般的な畳み込み操作を対象とする新しい深度圧縮アルゴリズムを提案する。
ImageNetのMobileNetV2-1.0では、0.11%の精度で1.41タイムのスピードアップを実現しています。
論文 参考訳(メタデータ) (2023-01-28T13:08:54Z) - Latency-aware Spatial-wise Dynamic Networks [33.88843632160247]
深層ネットワークのための遅延認識型空間的動的ネットワーク(LASNet)を提案する。
LASNetは、新しい遅延予測モデルのガイダンスに基づき、粗粒度空間適応推論を行う。
画像分類,オブジェクト検出,インスタンスセグメンテーションの実験により,提案手法はディープネットワークの実用的な推論効率を大幅に向上させることを示した。
論文 参考訳(メタデータ) (2022-10-12T14:09:27Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - Dynamic Slimmable Network [105.74546828182834]
ダイナミックスリム化システム「ダイナミックスリム化ネットワーク(DS-Net)」を開発。
ds-netは,提案するダブルヘッド動的ゲートによる動的推論機能を備えている。
静的圧縮法と最先端の静的および動的モデル圧縮法を一貫して上回っている。
論文 参考訳(メタデータ) (2021-03-24T15:25:20Z) - Fully Dynamic Inference with Deep Neural Networks [19.833242253397206]
Layer-Net(L-Net)とChannel-Net(C-Net)と呼ばれる2つのコンパクトネットワークは、どのレイヤやフィルタ/チャネルが冗長であるかをインスタンス毎に予測する。
CIFAR-10データセットでは、LC-Netは11.9$times$ less floating-point Operations (FLOPs) となり、他の動的推論手法と比較して最大3.3%精度が向上する。
ImageNetデータセットでは、LC-Netは最大1.4$times$ FLOPsを減らし、Top-1の精度は他の方法よりも4.6%高い。
論文 参考訳(メタデータ) (2020-07-29T23:17:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。