論文の概要: RoboTAP: Tracking Arbitrary Points for Few-Shot Visual Imitation
- arxiv url: http://arxiv.org/abs/2308.15975v2
- Date: Thu, 31 Aug 2023 15:29:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 11:23:12.169881
- Title: RoboTAP: Tracking Arbitrary Points for Few-Shot Visual Imitation
- Title(参考訳): RoboTAP: 眼球運動の視覚的模倣のための任意点追跡
- Authors: Mel Vecerik and Carl Doersch and Yi Yang and Todor Davchev and Yusuf
Aytar and Guangyao Zhou and Raia Hadsell and Lourdes Agapito and Jon Scholz
- Abstract要約: Track-Any-Point (TAP) モデルは、デモ中の関連する動きを分離し、低レベルのコントローラをパラメータ化して、シーン構成の変化をまたいでこの動きを再現する。
この結果は,形状整合,積み重ね,さらには接着や物体の付着といった完全な経路追従といった複雑な物体配置タスクを解くことのできるロバストなロボットポリシーで示される。
- 参考スコア(独自算出の注目度): 36.43143326197769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For robots to be useful outside labs and specialized factories we need a way
to teach them new useful behaviors quickly. Current approaches lack either the
generality to onboard new tasks without task-specific engineering, or else lack
the data-efficiency to do so in an amount of time that enables practical use.
In this work we explore dense tracking as a representational vehicle to allow
faster and more general learning from demonstration. Our approach utilizes
Track-Any-Point (TAP) models to isolate the relevant motion in a demonstration,
and parameterize a low-level controller to reproduce this motion across changes
in the scene configuration. We show this results in robust robot policies that
can solve complex object-arrangement tasks such as shape-matching, stacking,
and even full path-following tasks such as applying glue and sticking objects
together, all from demonstrations that can be collected in minutes.
- Abstract(参考訳): ロボットが外部の研究室や専門工場で役に立つためには、新しい有用な行動を素早く教える方法が必要だ。
現在のアプローチでは、タスク固有のエンジニアリングを使わずに新しいタスクをオンボードする一般性が欠如しているか、あるいは実用的な使用を可能にするデータ効率が欠如している。
本研究では,より速く,より汎用的な実演学習を可能にする表現型車両として,密集した追跡について検討する。
提案手法では,トラック・ナッシング・ポイント(tap)モデルを用いて実演中の関連する動きを分離し,低レベルコントローラをパラメータ化し,シーン構成の変化にまたがってこの動きを再現する。
この結果から,形状マッチングや積み重ね,さらには接着剤や付着物などの完全な経路追従作業といった複雑な物体配置タスクを,数分で収集可能なデモから解決できるロバストなロボットポリシが示される。
関連論文リスト
- Keypoint Abstraction using Large Models for Object-Relative Imitation Learning [78.92043196054071]
多様なタスクや環境にまたがる新しいオブジェクト構成やインスタンスへの一般化は、ロボット工学において重要な課題である。
キーポイントに基づく表現は、本質的なオブジェクトキャプチャ機能のための簡潔な表現として有効であることが証明されている。
本稿では,タスク関連およびクロスインスタンス整合性キーポイントの自動生成に,大規模な事前学習型視覚言語モデルを活用するフレームワークであるKALMを提案する。
論文 参考訳(メタデータ) (2024-10-30T17:37:31Z) - DITTO: Demonstration Imitation by Trajectory Transformation [31.930923345163087]
そこで本研究では,RGB-Dビデオ録画による実演映像のワンショット模倣の問題に対処する。
本稿では,2段階のプロセスを提案する。第1段階では実演軌道をオフラインに抽出し,操作対象のセグメンテーションと,容器などの二次物体に対する相対運動を決定する。
オンライン軌道生成段階では、まず全ての物体を再検出し、次にデモ軌道を現在のシーンにワープし、ロボット上で実行します。
論文 参考訳(メタデータ) (2024-03-22T13:46:51Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - Few-Shot In-Context Imitation Learning via Implicit Graph Alignment [15.215659641228655]
オブジェクトのグラフ表現間の条件付きアライメント問題として模倣学習を定式化する。
この条件付けにより、ロボットがデモ直後に新しいオブジェクトのセット上でタスクを実行できる、コンテキスト内学習が可能となることを示す。
論文 参考訳(メタデータ) (2023-10-18T18:26:01Z) - Visuomotor Control in Multi-Object Scenes Using Object-Aware
Representations [25.33452947179541]
ロボット作業におけるオブジェクト指向表現学習の有効性を示す。
本モデルは,サンプル効率のよい制御ポリシーを学習し,最先端のオブジェクト技術より優れている。
論文 参考訳(メタデータ) (2022-05-12T19:48:11Z) - Bottom-Up Skill Discovery from Unsegmented Demonstrations for
Long-Horizon Robot Manipulation [55.31301153979621]
我々は,実世界の長距離ロボット操作作業に,スキル発見による取り組みを行う。
未解決のデモンストレーションから再利用可能なスキルのライブラリを学ぶためのボトムアップアプローチを提案する。
提案手法は,多段階操作タスクにおける最先端の模倣学習手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-09-28T16:18:54Z) - Learning to Shift Attention for Motion Generation [55.61994201686024]
ロボット学習を用いた動作生成の課題の1つは、人間のデモが1つのタスククエリに対して複数のモードを持つ分布に従うことである。
以前のアプローチでは、すべてのモードをキャプチャできなかったり、デモの平均モードを取得できないため、無効なトラジェクトリを生成する傾向があった。
この問題を克服する外挿能力を有するモーション生成モデルを提案する。
論文 参考訳(メタデータ) (2021-02-24T09:07:52Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z) - Meta Adaptation using Importance Weighted Demonstrations [19.37671674146514]
エージェントが新しいタスクを推測することが困難である場合も少なくない。
本稿では,特定のタスクの集合に関する事前知識を活用することで,関連するタスクを一般化する新しいアルゴリズムを提案する。
環境タスクの多様性からロボットを訓練し、目に見えない環境に適応できる実験を行った。
論文 参考訳(メタデータ) (2019-11-23T07:22:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。