Temporal-spatial model via Trend Filtering
- URL: http://arxiv.org/abs/2308.16172v4
- Date: Wed, 13 Sep 2023 00:54:24 GMT
- Title: Temporal-spatial model via Trend Filtering
- Authors: Carlos Misael Madrid Padilla, Oscar Hernan Madrid Padilla, Daren Wang
- Abstract summary: This research focuses on the estimation of a non-parametric regression function designed for data with simultaneous time and space dependencies.
A unique phase transition phenomenon, previously uncharted in Trend Filtering studies, emerges through our analysis.
- Score: 12.875863572064986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research focuses on the estimation of a non-parametric regression
function designed for data with simultaneous time and space dependencies. In
such a context, we study the Trend Filtering, a nonparametric estimator
introduced by \cite{mammen1997locally} and \cite{rudin1992nonlinear}. For
univariate settings, the signals we consider are assumed to have a kth weak
derivative with bounded total variation, allowing for a general degree of
smoothness. In the multivariate scenario, we study a $K$-Nearest Neighbor fused
lasso estimator as in \cite{padilla2018adaptive}, employing an ADMM algorithm,
suitable for signals with bounded variation that adhere to a piecewise
Lipschitz continuity criterion. By aligning with lower bounds, the minimax
optimality of our estimators is validated. A unique phase transition
phenomenon, previously uncharted in Trend Filtering studies, emerges through
our analysis. Both Simulation studies and real data applications underscore the
superior performance of our method when compared with established techniques in
the existing literature.
Related papers
- Unveiling the Cycloid Trajectory of EM Iterations in Mixed Linear Regression [5.883916678819683]
We study the trajectory of iterations and the convergence rates of the Expectation-Maximization (EM) algorithm for two-component Mixed Linear Regression (2MLR)
Recent results have established the super-linear convergence of EM for 2MLR in the noiseless and high SNR settings.
arXiv Detail & Related papers (2024-05-28T14:46:20Z) - Refining Amortized Posterior Approximations using Gradient-Based Summary
Statistics [0.9176056742068814]
We present an iterative framework to improve the amortized approximations of posterior distributions in the context of inverse problems.
We validate our method in a controlled setting by applying it to a stylized problem, and observe improved posterior approximations with each iteration.
arXiv Detail & Related papers (2023-05-15T15:47:19Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
We study the citetgarber 2020online, where the loss functions may be chosen by an adversary, but are then presented online in a uniformly random order.
We show that citetgarber 2020online algorithms achieve the optimal bounds and significantly improve their stability.
arXiv Detail & Related papers (2021-06-29T09:48:46Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
We study binary linear classification under a generative Gaussian mixture model.
We derive novel non-asymptotic bounds on the classification error of the latter.
Our results extend to a noisy model with constant probability noise flips.
arXiv Detail & Related papers (2020-11-18T07:59:55Z) - A spectral algorithm for robust regression with subgaussian rates [0.0]
We study a new linear up to quadratic time algorithm for linear regression in the absence of strong assumptions on the underlying distributions of samples.
The goal is to design a procedure which attains the optimal sub-gaussian error bound even though the data have only finite moments.
arXiv Detail & Related papers (2020-07-12T19:33:50Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
We address the problem of policy evaluation in discounted decision processes, and provide Markov-dependent guarantees on the $ell_infty$error under a generative model.
We establish both and non-asymptotic versions of local minimax lower bounds for policy evaluation, thereby providing an instance-dependent baseline by which to compare algorithms.
arXiv Detail & Related papers (2020-03-16T17:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.