A Recycling Training Strategy for Medical Image Segmentation with
Diffusion Denoising Models
- URL: http://arxiv.org/abs/2308.16355v3
- Date: Fri, 8 Dec 2023 16:22:28 GMT
- Title: A Recycling Training Strategy for Medical Image Segmentation with
Diffusion Denoising Models
- Authors: Yunguan Fu, Yiwen Li, Shaheer U Saeed, Matthew J Clarkson, Yipeng Hu
- Abstract summary: Denoising diffusion models have found applications in image segmentation by generating segmented masks conditioned on images.
In this work, we focus on improving the training strategy and propose a novel recycling method.
We show that, under a fair comparison with the same network architectures and computing budget, the proposed recycling-based diffusion models achieved on-par performance with non-diffusion-based supervised training.
- Score: 8.649603931882227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Denoising diffusion models have found applications in image segmentation by
generating segmented masks conditioned on images. Existing studies
predominantly focus on adjusting model architecture or improving inference,
such as test-time sampling strategies. In this work, we focus on improving the
training strategy and propose a novel recycling method. During each training
step, a segmentation mask is first predicted given an image and a random noise.
This predicted mask, which replaces the conventional ground truth mask, is used
for denoising task during training. This approach can be interpreted as
aligning the training strategy with inference by eliminating the dependence on
ground truth masks for generating noisy samples. Our proposed method
significantly outperforms standard diffusion training, self-conditioning, and
existing recycling strategies across multiple medical imaging data sets: muscle
ultrasound, abdominal CT, prostate MR, and brain MR. This holds for two widely
adopted sampling strategies: denoising diffusion probabilistic model and
denoising diffusion implicit model. Importantly, existing diffusion models
often display a declining or unstable performance during inference, whereas our
novel recycling consistently enhances or maintains performance. We show that,
under a fair comparison with the same network architectures and computing
budget, the proposed recycling-based diffusion models achieved on-par
performance with non-diffusion-based supervised training. By ensembling the
proposed diffusion and the non-diffusion models, significant improvements to
the non-diffusion models have been observed across all applications,
demonstrating the value of this novel training method. This paper summarizes
these quantitative results and discusses their values, with a fully
reproducible JAX-based implementation, released at
https://github.com/mathpluscode/ImgX-DiffSeg.
Related papers
- Learning Diffusion Model from Noisy Measurement using Principled Expectation-Maximization Method [9.173055778539641]
We propose a principled expectation-maximization (EM) framework that iteratively learns diffusion models from noisy data with arbitrary corruption types.
Our framework employs a plug-and-play Monte Carlo method to accurately estimate clean images from noisy measurements, followed by training the diffusion model using the reconstructed images.
arXiv Detail & Related papers (2024-10-15T03:54:59Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - Denoising Autoregressive Representation Learning [13.185567468951628]
Our method, DARL, employs a decoder-only Transformer to predict image patches autoregressively.
We show that the learned representation can be improved by using tailored noise schedules and longer training in larger models.
arXiv Detail & Related papers (2024-03-08T10:19:00Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
We propose a novel diffusion model-based MRI reconstruction method, named TC-DiffRecon, which does not rely on a specific acceleration factor for training.
We also suggest the incorporation of the MF-UNet module, designed to enhance the quality of MRI images generated by the model.
arXiv Detail & Related papers (2024-02-17T13:09:00Z) - Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
We propose to ameliorate the semantic segmentation quality of existing discriminative approaches with a mask prior modeled by a denoising diffusion generative model.
We evaluate the proposed prior modeling with several off-the-shelf segmentors, and our experimental results on ADE20K and Cityscapes demonstrate that our approach could achieve competitively quantitative performance.
arXiv Detail & Related papers (2023-06-02T17:47:01Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.