On the Equivalence between Implicit and Explicit Neural Networks: A
High-dimensional Viewpoint
- URL: http://arxiv.org/abs/2308.16425v1
- Date: Thu, 31 Aug 2023 03:28:43 GMT
- Title: On the Equivalence between Implicit and Explicit Neural Networks: A
High-dimensional Viewpoint
- Authors: Zenan Ling, Zhenyu Liao, Robert C. Qiu
- Abstract summary: Implicit neural networks have demonstrated remarkable success in various tasks.
There is a lack of theoretical analysis of the connections and differences between implicit and explicit networks.
- Score: 6.790383517643622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit neural networks have demonstrated remarkable success in various
tasks. However, there is a lack of theoretical analysis of the connections and
differences between implicit and explicit networks. In this paper, we study
high-dimensional implicit neural networks and provide the high dimensional
equivalents for the corresponding conjugate kernels and neural tangent kernels.
Built upon this, we establish the equivalence between implicit and explicit
networks in high dimensions.
Related papers
- The Evolution of the Interplay Between Input Distributions and Linear
Regions in Networks [20.97553518108504]
We count the number of linear convex regions in deep neural networks based on ReLU.
In particular, we prove that for any one-dimensional input, there exists a minimum threshold for the number of neurons required to express it.
We also unveil the iterative refinement process of decision boundaries in ReLU networks during training.
arXiv Detail & Related papers (2023-10-28T15:04:53Z) - Riemannian Residual Neural Networks [58.925132597945634]
We show how to extend the residual neural network (ResNet)
ResNets have become ubiquitous in machine learning due to their beneficial learning properties, excellent empirical results, and easy-to-incorporate nature when building varied neural networks.
arXiv Detail & Related papers (2023-10-16T02:12:32Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Deep Neural Networks as Complex Networks [1.704936863091649]
We use Complex Network Theory to represent Deep Neural Networks (DNNs) as directed weighted graphs.
We introduce metrics to study DNNs as dynamical systems, with a granularity that spans from weights to layers, including neurons.
We show that our metrics discriminate low vs. high performing networks.
arXiv Detail & Related papers (2022-09-12T16:26:04Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
We show that dimensionality and quasi-orthogonality of neural networks' feature space may jointly serve as network's performance discriminants.
Our findings suggest important relationships between the networks' final performance and properties of their randomly initialised feature spaces.
arXiv Detail & Related papers (2022-03-30T21:47:32Z) - On neural network kernels and the storage capacity problem [16.244541005112747]
We reify the connection between work on the storage capacity problem in wide two-layer treelike neural networks and the rapidly-growing body of literature on kernel limits of wide neural networks.
arXiv Detail & Related papers (2022-01-12T19:47:30Z) - NFT-K: Non-Fungible Tangent Kernels [23.93508901712177]
We develop a new network as a combination of multiple neural tangent kernels, one to model each layer of the deep neural network individually.
We demonstrate the interpretability of this model on two datasets, showing that the multiple kernels model elucidates the interplay between the layers and predictions.
arXiv Detail & Related papers (2021-10-11T00:35:47Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
In certain infinitely-wide neural networks, the neural tangent kernel (NTK) theory fully characterizes generalization.
We show that the linear approximations can indeed rank the learning complexity of certain tasks for neural networks.
Our work provides concrete examples of novel deep learning phenomena which can inspire future theoretical research.
arXiv Detail & Related papers (2021-06-12T13:05:11Z) - Analytical aspects of non-differentiable neural networks [0.0]
We discuss the expressivity of quantized neural networks and approximation techniques for non-differentiable networks.
We show that QNNs have the same expressivity as DNNs in terms of approximation of Lipschitz functions in the $Linfty$ norm.
We also consider networks defined by means of Heaviside-type activation functions, and prove for them a pointwise approximation result by means of smooth networks.
arXiv Detail & Related papers (2020-11-03T17:20:43Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.