Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks
- URL: http://arxiv.org/abs/2404.01932v1
- Date: Tue, 2 Apr 2024 13:25:16 GMT
- Title: Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks
- Authors: Gabriela Sejnova, Michal Vavrecka, Karla Stepanova,
- Abstract summary: In this work, we focus on unsupervised vision-language--action mapping in the area of robotic manipulation.
We propose a model-invariant training alternative that improves the models' performance in a simulator by up to 55%.
Our work thus also sheds light on the potential benefits and limitations of using the current multimodal VAEs for unsupervised learning of robotic motion trajectories.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we focus on unsupervised vision-language-action mapping in the area of robotic manipulation. Recently, multiple approaches employing pre-trained large language and vision models have been proposed for this task. However, they are computationally demanding and require careful fine-tuning of the produced outputs. A more lightweight alternative would be the implementation of multimodal Variational Autoencoders (VAEs) which can extract the latent features of the data and integrate them into a joint representation, as has been demonstrated mostly on image-image or image-text data for the state-of-the-art models. Here we explore whether and how can multimodal VAEs be employed in unsupervised robotic manipulation tasks in a simulated environment. Based on the obtained results, we propose a model-invariant training alternative that improves the models' performance in a simulator by up to 55%. Moreover, we systematically evaluate the challenges raised by the individual tasks such as object or robot position variability, number of distractors or the task length. Our work thus also sheds light on the potential benefits and limitations of using the current multimodal VAEs for unsupervised learning of robotic motion trajectories based on vision and language.
Related papers
- SKT: Integrating State-Aware Keypoint Trajectories with Vision-Language Models for Robotic Garment Manipulation [82.61572106180705]
This paper presents a unified approach using vision-language models (VLMs) to improve keypoint prediction across various garment categories.
We created a large-scale synthetic dataset using advanced simulation techniques, allowing scalable training without extensive real-world data.
Experimental results indicate that the VLM-based method significantly enhances keypoint detection accuracy and task success rates.
arXiv Detail & Related papers (2024-09-26T17:26:16Z) - LLARVA: Vision-Action Instruction Tuning Enhances Robot Learning [50.99807031490589]
We introduce LLARVA, a model trained with a novel instruction tuning method to unify a range of robotic learning tasks, scenarios, and environments.
We generate 8.5M image-visual trace pairs from the Open X-Embodiment dataset in order to pre-train our model.
Experiments yield strong performance, demonstrating that LLARVA performs well compared to several contemporary baselines.
arXiv Detail & Related papers (2024-06-17T17:55:29Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - MEIA: Multimodal Embodied Perception and Interaction in Unknown Environments [82.67236400004826]
We introduce the Multimodal Embodied Interactive Agent (MEIA), capable of translating high-level tasks expressed in natural language into a sequence of executable actions.
MEM module enables MEIA to generate executable action plans based on diverse requirements and the robot's capabilities.
arXiv Detail & Related papers (2024-02-01T02:43:20Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
Vision-language models (VLMs) have shown powerful capabilities in visual question answering and reasoning tasks.
In this paper, we demonstrate a method of aligning the embedding spaces of different modalities to the vision embedding space.
We show that using multiple modalities as input improves the VLM's scene understanding and enhances its overall performance in various tasks.
arXiv Detail & Related papers (2023-08-31T06:53:55Z) - PaLM-E: An Embodied Multimodal Language Model [101.29116156731762]
We propose embodied language models to incorporate real-world continuous sensor modalities into language models.
We train these encodings end-to-end, in conjunction with a pre-trained large language model, for multiple embodied tasks.
Our largest model, PaLM-E-562B with 562B parameters, is a visual-language generalist with state-of-the-art performance on OK-VQA.
arXiv Detail & Related papers (2023-03-06T18:58:06Z) - PACT: Perception-Action Causal Transformer for Autoregressive Robotics
Pre-Training [25.50131893785007]
This work introduces a paradigm for pre-training a general purpose representation that can serve as a starting point for multiple tasks on a given robot.
We present the Perception-Action Causal Transformer (PACT), a generative transformer-based architecture that aims to build representations directly from robot data in a self-supervised fashion.
We show that finetuning small task-specific networks on top of the larger pretrained model results in significantly better performance compared to training a single model from scratch for all tasks simultaneously.
arXiv Detail & Related papers (2022-09-22T16:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.