Scalable Incomplete Multi-View Clustering with Structure Alignment
- URL: http://arxiv.org/abs/2308.16541v1
- Date: Thu, 31 Aug 2023 08:30:26 GMT
- Title: Scalable Incomplete Multi-View Clustering with Structure Alignment
- Authors: Yi Wen, Siwei Wang, Ke Liang, Weixuan Liang, Xinhang Wan, Xinwang Liu,
Suyuan Liu, Jiyuan Liu, En Zhu
- Abstract summary: In this paper, we propose a novel incomplete anchor graph learning framework.
We construct the view-specific anchor graph to capture the complementary information from different views.
The time and space complexity of the proposed SIMVC-SA is proven to be linearly correlated with the number of samples.
- Score: 71.62781659121092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of existing multi-view clustering (MVC) relies on the assumption
that all views are complete. However, samples are usually partially available
due to data corruption or sensor malfunction, which raises the research of
incomplete multi-view clustering (IMVC). Although several anchor-based IMVC
methods have been proposed to process the large-scale incomplete data, they
still suffer from the following drawbacks: i) Most existing approaches neglect
the inter-view discrepancy and enforce cross-view representation to be
consistent, which would corrupt the representation capability of the model; ii)
Due to the samples disparity between different views, the learned anchor might
be misaligned, which we referred as the Anchor-Unaligned Problem for Incomplete
data (AUP-ID). Such the AUP-ID would cause inaccurate graph fusion and degrades
clustering performance. To tackle these issues, we propose a novel incomplete
anchor graph learning framework termed Scalable Incomplete Multi-View
Clustering with Structure Alignment (SIMVC-SA). Specially, we construct the
view-specific anchor graph to capture the complementary information from
different views. In order to solve the AUP-ID, we propose a novel structure
alignment module to refine the cross-view anchor correspondence. Meanwhile, the
anchor graph construction and alignment are jointly optimized in our unified
framework to enhance clustering quality. Through anchor graph construction
instead of full graphs, the time and space complexity of the proposed SIMVC-SA
is proven to be linearly correlated with the number of samples. Extensive
experiments on seven incomplete benchmark datasets demonstrate the
effectiveness and efficiency of our proposed method. Our code is publicly
available at https://github.com/wy1019/SIMVC-SA.
Related papers
- Discriminative Anchor Learning for Efficient Multi-view Clustering [59.11406089896875]
We propose discriminative anchor learning for multi-view clustering (DALMC)
We learn discriminative view-specific feature representations according to the original dataset.
We build anchors from different views based on these representations, which increase the quality of the shared anchor graph.
arXiv Detail & Related papers (2024-09-25T13:11:17Z) - Incomplete Contrastive Multi-View Clustering with High-Confidence
Guiding [7.305817202715752]
We propose a novel Incomplete Contrastive Multi-View Clustering method with high-confidence guiding (ICMVC)
Firstly, we proposed a multi-view consistency relation transfer plus graph convolutional network to tackle missing values problem.
Secondly, instance-level attention fusion and high-confidence guiding are proposed to exploit the complementary information.
arXiv Detail & Related papers (2023-12-14T07:28:41Z) - Efficient Multi-View Graph Clustering with Local and Global Structure
Preservation [59.49018175496533]
We propose a novel anchor-based multi-view graph clustering framework termed Efficient Multi-View Graph Clustering with Local and Global Structure Preservation (EMVGC-LG)
Specifically, EMVGC-LG jointly optimize anchor construction and graph learning to enhance the clustering quality.
In addition, EMVGC-LG inherits the linear complexity of existing AMVGC methods respecting the sample number.
arXiv Detail & Related papers (2023-08-31T12:12:30Z) - Unpaired Multi-View Graph Clustering with Cross-View Structure Matching [39.310384044597065]
Most existing MVC methods assume that multi-view data are fully paired, which means that the mappings of all corresponding samples between views are pre-defined or given in advance.
The data correspondence is often incomplete in real-world applications due to data corruption or sensor differences.
We propose a novel parameter-free graph clustering framework termed Unpaired Multi-view Graph Clustering framework with Cross-View Structure Matching.
arXiv Detail & Related papers (2023-07-07T09:29:44Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
We propose a Cross-view Partial Sample and Prototype Alignment Network (CPSPAN) for Deep Incomplete Multi-view Clustering.
Unlike existing contrastive-based methods, we adopt pair-observed data alignment as 'proxy supervised signals' to guide instance-to-instance correspondence construction.
arXiv Detail & Related papers (2023-03-28T02:31:57Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Localized Sparse Incomplete Multi-view Clustering [22.009806900278786]
This paper proposes a simple but effective method, named localized sparse incomplete multi-view clustering (LSIMVC)
To tackle these problems, this paper proposes a simple but effective method, named localized sparse incomplete multi-view clustering (LSIMVC)
arXiv Detail & Related papers (2022-08-05T05:48:28Z) - Align then Fusion: Generalized Large-scale Multi-view Clustering with
Anchor Matching Correspondences [53.09276639185084]
Multi-view anchor graph clustering selects representative anchors to avoid full pair-wise similarities.
Existing approaches do not pay sufficient attention to establishing correct correspondences between the anchor sets across views.
arXiv Detail & Related papers (2022-05-30T13:07:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.