Fault Injection and Safe-Error Attack for Extraction of Embedded Neural
Network Models
- URL: http://arxiv.org/abs/2308.16703v1
- Date: Thu, 31 Aug 2023 13:09:33 GMT
- Title: Fault Injection and Safe-Error Attack for Extraction of Embedded Neural
Network Models
- Authors: Kevin Hector, Pierre-Alain Moellic, Mathieu Dumont, Jean-Max Dutertre
- Abstract summary: We focus on embedded deep neural network models on 32-bit microcontrollers in the Internet of Things (IoT)
We propose a black-box approach to craft a successful attack set.
For a classical convolutional neural network, we successfully recover at least 90% of the most significant bits with about 1500 crafted inputs.
- Score: 1.3654846342364308
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Model extraction emerges as a critical security threat with attack vectors
exploiting both algorithmic and implementation-based approaches. The main goal
of an attacker is to steal as much information as possible about a protected
victim model, so that he can mimic it with a substitute model, even with a
limited access to similar training data. Recently, physical attacks such as
fault injection have shown worrying efficiency against the integrity and
confidentiality of embedded models. We focus on embedded deep neural network
models on 32-bit microcontrollers, a widespread family of hardware platforms in
IoT, and the use of a standard fault injection strategy - Safe Error Attack
(SEA) - to perform a model extraction attack with an adversary having a limited
access to training data. Since the attack strongly depends on the input
queries, we propose a black-box approach to craft a successful attack set. For
a classical convolutional neural network, we successfully recover at least 90%
of the most significant bits with about 1500 crafted inputs. These information
enable to efficiently train a substitute model, with only 8% of the training
dataset, that reaches high fidelity and near identical accuracy level than the
victim model.
Related papers
- A Practical Trigger-Free Backdoor Attack on Neural Networks [33.426207982772226]
We propose a trigger-free backdoor attack that does not require access to any training data.
Specifically, we design a novel fine-tuning approach that incorporates the concept of malicious data into the concept of the attacker-specified class.
The effectiveness, practicality, and stealthiness of the proposed attack are evaluated on three real-world datasets.
arXiv Detail & Related papers (2024-08-21T08:53:36Z) - One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training [54.622474306336635]
A new weight modification attack called bit flip attack (BFA) was proposed, which exploits memory fault inject techniques.
We propose a training-assisted bit flip attack, in which the adversary is involved in the training stage to build a high-risk model to release.
arXiv Detail & Related papers (2023-08-12T09:34:43Z) - Isolation and Induction: Training Robust Deep Neural Networks against
Model Stealing Attacks [51.51023951695014]
Existing model stealing defenses add deceptive perturbations to the victim's posterior probabilities to mislead the attackers.
This paper proposes Isolation and Induction (InI), a novel and effective training framework for model stealing defenses.
In contrast to adding perturbations over model predictions that harm the benign accuracy, we train models to produce uninformative outputs against stealing queries.
arXiv Detail & Related papers (2023-08-02T05:54:01Z) - Boosting Model Inversion Attacks with Adversarial Examples [26.904051413441316]
We propose a new training paradigm for a learning-based model inversion attack that can achieve higher attack accuracy in a black-box setting.
First, we regularize the training process of the attack model with an added semantic loss function.
Second, we inject adversarial examples into the training data to increase the diversity of the class-related parts.
arXiv Detail & Related papers (2023-06-24T13:40:58Z) - Careful What You Wish For: on the Extraction of Adversarially Trained
Models [2.707154152696381]
Recent attacks on Machine Learning (ML) models pose several security and privacy threats.
We propose a framework to assess extraction attacks on adversarially trained models.
We show that adversarially trained models are more vulnerable to extraction attacks than models obtained under natural training circumstances.
arXiv Detail & Related papers (2022-07-21T16:04:37Z) - Are Your Sensitive Attributes Private? Novel Model Inversion Attribute
Inference Attacks on Classification Models [22.569705869469814]
We focus on model inversion attacks where the adversary knows non-sensitive attributes about records in the training data.
We devise a novel confidence score-based model inversion attribute inference attack that significantly outperforms the state-of-the-art.
We also extend our attacks to the scenario where some of the other (non-sensitive) attributes of a target record are unknown to the adversary.
arXiv Detail & Related papers (2022-01-23T21:27:20Z) - Delving into Data: Effectively Substitute Training for Black-box Attack [84.85798059317963]
We propose a novel perspective substitute training that focuses on designing the distribution of data used in the knowledge stealing process.
The combination of these two modules can further boost the consistency of the substitute model and target model, which greatly improves the effectiveness of adversarial attack.
arXiv Detail & Related papers (2021-04-26T07:26:29Z) - Practical No-box Adversarial Attacks against DNNs [31.808770437120536]
We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model.
We propose three mechanisms for training with a very small dataset and find that prototypical reconstruction is the most effective.
Our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.
arXiv Detail & Related papers (2020-12-04T11:10:03Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Learning to Attack: Towards Textual Adversarial Attacking in Real-world
Situations [81.82518920087175]
Adversarial attacking aims to fool deep neural networks with adversarial examples.
We propose a reinforcement learning based attack model, which can learn from attack history and launch attacks more efficiently.
arXiv Detail & Related papers (2020-09-19T09:12:24Z) - DaST: Data-free Substitute Training for Adversarial Attacks [55.76371274622313]
We propose a data-free substitute training method (DaST) to obtain substitute models for adversarial black-box attacks.
To achieve this, DaST utilizes specially designed generative adversarial networks (GANs) to train the substitute models.
Experiments demonstrate the substitute models can achieve competitive performance compared with the baseline models.
arXiv Detail & Related papers (2020-03-28T04:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.