A Practical Trigger-Free Backdoor Attack on Neural Networks
- URL: http://arxiv.org/abs/2408.11444v1
- Date: Wed, 21 Aug 2024 08:53:36 GMT
- Title: A Practical Trigger-Free Backdoor Attack on Neural Networks
- Authors: Jiahao Wang, Xianglong Zhang, Xiuzhen Cheng, Pengfei Hu, Guoming Zhang,
- Abstract summary: We propose a trigger-free backdoor attack that does not require access to any training data.
Specifically, we design a novel fine-tuning approach that incorporates the concept of malicious data into the concept of the attacker-specified class.
The effectiveness, practicality, and stealthiness of the proposed attack are evaluated on three real-world datasets.
- Score: 33.426207982772226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks on deep neural networks have emerged as significant security threats, especially as DNNs are increasingly deployed in security-critical applications. However, most existing works assume that the attacker has access to the original training data. This limitation restricts the practicality of launching such attacks in real-world scenarios. Additionally, using a specified trigger to activate the injected backdoor compromises the stealthiness of the attacks. To address these concerns, we propose a trigger-free backdoor attack that does not require access to any training data. Specifically, we design a novel fine-tuning approach that incorporates the concept of malicious data into the concept of the attacker-specified class, resulting the misclassification of trigger-free malicious data into the attacker-specified class. Furthermore, instead of relying on training data to preserve the model's knowledge, we employ knowledge distillation methods to maintain the performance of the infected model on benign samples, and introduce a parameter importance evaluation mechanism based on elastic weight constraints to facilitate the fine-tuning of the infected model. The effectiveness, practicality, and stealthiness of the proposed attack are comprehensively evaluated on three real-world datasets. Furthermore, we explore the potential for enhancing the attack through the use of auxiliary datasets and model inversion.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.