Exploring Cross-Cultural Differences in English Hate Speech Annotations: From Dataset Construction to Analysis
- URL: http://arxiv.org/abs/2308.16705v3
- Date: Wed, 3 Apr 2024 05:57:49 GMT
- Title: Exploring Cross-Cultural Differences in English Hate Speech Annotations: From Dataset Construction to Analysis
- Authors: Nayeon Lee, Chani Jung, Junho Myung, Jiho Jin, Jose Camacho-Collados, Juho Kim, Alice Oh,
- Abstract summary: Most hate speech datasets neglect the cultural diversity within a single language.
To address this, we introduce CREHate, a CRoss-cultural English Hate speech dataset.
Only 56.2% of the posts in CREHate achieve consensus among all countries, with the highest pairwise label difference rate of 26%.
- Score: 44.17106903728264
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Warning: this paper contains content that may be offensive or upsetting. Most hate speech datasets neglect the cultural diversity within a single language, resulting in a critical shortcoming in hate speech detection. To address this, we introduce CREHate, a CRoss-cultural English Hate speech dataset. To construct CREHate, we follow a two-step procedure: 1) cultural post collection and 2) cross-cultural annotation. We sample posts from the SBIC dataset, which predominantly represents North America, and collect posts from four geographically diverse English-speaking countries (Australia, United Kingdom, Singapore, and South Africa) using culturally hateful keywords we retrieve from our survey. Annotations are collected from the four countries plus the United States to establish representative labels for each country. Our analysis highlights statistically significant disparities across countries in hate speech annotations. Only 56.2% of the posts in CREHate achieve consensus among all countries, with the highest pairwise label difference rate of 26%. Qualitative analysis shows that label disagreement occurs mostly due to different interpretations of sarcasm and the personal bias of annotators on divisive topics. Lastly, we evaluate large language models (LLMs) under a zero-shot setting and show that current LLMs tend to show higher accuracies on Anglosphere country labels in CREHate. Our dataset and codes are available at: https://github.com/nlee0212/CREHate
Related papers
- Multi3Hate: Multimodal, Multilingual, and Multicultural Hate Speech Detection with Vision-Language Models [11.82100047858478]
We create the first multimodal and multilingual parallel hate speech dataset, annotated by a multicultural set of annotators, called Multi3Hate.
It contains 300 parallel meme samples across 5 languages: English, German, Spanish, Hindi, and Mandarin.
We demonstrate that cultural background significantly affects multimodal hate speech annotation in our dataset. The average pairwise agreement among countries is just 74%, significantly lower than that of randomly selected annotator groups.
arXiv Detail & Related papers (2024-11-06T13:06:43Z) - WorldCuisines: A Massive-Scale Benchmark for Multilingual and Multicultural Visual Question Answering on Global Cuisines [74.25764182510295]
Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English.
We introduce World Cuisines, a massive-scale benchmark for multilingual and multicultural, visually grounded language understanding.
This benchmark includes a visual question answering (VQA) dataset with text-image pairs across 30 languages and dialects, spanning 9 language families and featuring over 1 million data points.
arXiv Detail & Related papers (2024-10-16T16:11:49Z) - CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models [59.22460740026037]
"CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset is designed to evaluate the social and cultural variation of Large Language Models (LLMs)
We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy.
arXiv Detail & Related papers (2024-05-22T20:19:10Z) - From Languages to Geographies: Towards Evaluating Cultural Bias in Hate Speech Datasets [10.264294331399434]
Hate speech datasets have traditionally been developed by language.
We evaluate cultural bias in HS datasets by leveraging two interrelated cultural proxies: language and geography.
We find that HS datasets for English, Arabic and Spanish exhibit a strong geo-cultural bias.
arXiv Detail & Related papers (2024-04-27T12:10:10Z) - Into the LAIONs Den: Investigating Hate in Multimodal Datasets [67.21783778038645]
This paper investigates the effect of scaling datasets on hateful content through a comparative audit of two datasets: LAION-400M and LAION-2B.
We found that hate content increased by nearly 12% with dataset scale, measured both qualitatively and quantitatively.
We also found that filtering dataset contents based on Not Safe For Work (NSFW) values calculated based on images alone does not exclude all the harmful content in alt-text.
arXiv Detail & Related papers (2023-11-06T19:00:05Z) - LAHM : Large Annotated Dataset for Multi-Domain and Multilingual Hate
Speech Identification [2.048680519934008]
We present a new multilingual hate speech analysis dataset for English, Hindi, Arabic, French, German and Spanish languages.
This paper is the first to address the problem of identifying various types of hate speech in these five wide domains in these six languages.
arXiv Detail & Related papers (2023-04-03T12:03:45Z) - KOLD: Korean Offensive Language Dataset [11.699797031874233]
We present a Korean offensive language dataset (KOLD), 40k comments labeled with offensiveness, target, and targeted group information.
We show that title information serves as context and is helpful to discern the target of hatred, especially when they are omitted in the comment.
arXiv Detail & Related papers (2022-05-23T13:58:45Z) - Korean Online Hate Speech Dataset for Multilabel Classification: How Can
Social Science Improve Dataset on Hate Speech? [0.4893345190925178]
We suggest a multilabel Korean online hate speech dataset that covers seven categories of hate speech.
Our 35K dataset consists of 24K online comments with Krippendorff's Alpha label.
Unlike the conventional binary hate and non-hate dichotomy approach, we designed a dataset considering both the cultural and linguistic context.
arXiv Detail & Related papers (2022-04-07T07:29:06Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.