CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models
- URL: http://arxiv.org/abs/2405.13974v1
- Date: Wed, 22 May 2024 20:19:10 GMT
- Title: CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models
- Authors: Giada Pistilli, Alina Leidinger, Yacine Jernite, Atoosa Kasirzadeh, Alexandra Sasha Luccioni, Margaret Mitchell,
- Abstract summary: "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset is designed to evaluate the social and cultural variation of Large Language Models (LLMs)
We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy.
- Score: 59.22460740026037
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces the "CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset, designed to evaluate the social and cultural variation of Large Language Models (LLMs) across multiple languages and value-sensitive topics. We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy. CIVICS is designed to generate responses showing LLMs' encoded and implicit values. Through our dynamic annotation processes, tailored prompt design, and experiments, we investigate how open-weight LLMs respond to value-sensitive issues, exploring their behavior across diverse linguistic and cultural contexts. Using two experimental set-ups based on log-probabilities and long-form responses, we show social and cultural variability across different LLMs. Specifically, experiments involving long-form responses demonstrate that refusals are triggered disparately across models, but consistently and more frequently in English or translated statements. Moreover, specific topics and sources lead to more pronounced differences across model answers, particularly on immigration, LGBTQI rights, and social welfare. As shown by our experiments, the CIVICS dataset aims to serve as a tool for future research, promoting reproducibility and transparency across broader linguistic settings, and furthering the development of AI technologies that respect and reflect global cultural diversities and value pluralism. The CIVICS dataset and tools will be made available upon publication under open licenses; an anonymized version is currently available at https://huggingface.co/CIVICS-dataset.
Related papers
- Multi-ToM: Evaluating Multilingual Theory of Mind Capabilities in Large Language Models [3.9532244541907793]
Theory of Mind (ToM) refers to the cognitive ability to infer and attribute mental states to oneself and others.
It remains unclear to what extent large language models (LLMs) demonstrate ToM across diverse languages and cultural contexts.
This paper introduces a comprehensive study of multilingual ToM capabilities aimed at addressing this gap.
arXiv Detail & Related papers (2024-11-24T22:37:59Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
We focus on extrinsic evaluation of cultural competence in two text generation tasks.
We evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts.
We find weak correlations between text similarity of outputs for different countries and the cultural values of these countries.
arXiv Detail & Related papers (2024-06-17T14:03:27Z) - CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark [68.21939124278065]
Culturally-diverse multilingual Visual Question Answering benchmark designed to cover a rich set of languages and cultures.
CVQA includes culturally-driven images and questions from across 30 countries on four continents, covering 31 languages with 13 scripts, providing a total of 10k questions.
We benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models.
arXiv Detail & Related papers (2024-06-10T01:59:00Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
This paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection.
It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs.
We evaluate these models across three downstream tasks: content moderation, cultural alignment, and cultural education.
arXiv Detail & Related papers (2024-05-24T01:49:02Z) - The Echoes of Multilinguality: Tracing Cultural Value Shifts during LM Fine-tuning [23.418656688405605]
We study how languages can exert influence on the cultural values encoded for different test languages, by studying how such values are revised during fine-tuning.
Lastly, we use a training data attribution method to find patterns in the fine-tuning examples, and the languages that they come from, that tend to instigate value shifts.
arXiv Detail & Related papers (2024-05-21T12:55:15Z) - Investigating Cultural Alignment of Large Language Models [10.738300803676655]
We show that Large Language Models (LLMs) genuinely encapsulate the diverse knowledge adopted by different cultures.
We quantify cultural alignment by simulating sociological surveys, comparing model responses to those of actual survey participants as references.
We introduce Anthropological Prompting, a novel method leveraging anthropological reasoning to enhance cultural alignment.
arXiv Detail & Related papers (2024-02-20T18:47:28Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
This paper introduces a novel approach for massively multicultural knowledge acquisition.
Our method strategically navigates from densely informative Wikipedia documents on cultural topics to an extensive network of linked pages.
Our work marks an important step towards deeper understanding and bridging the gaps of cultural disparities in AI.
arXiv Detail & Related papers (2024-02-14T18:16:54Z) - Deception detection in text and its relation to the cultural dimension
of individualism/collectivism [6.17866386107486]
We investigate if differences in the usage of specific linguistic features of deception across cultures can be confirmed and attributed to norms in respect to the individualism/collectivism divide.
We create culture/language-aware classifiers by experimenting with a wide range of n-gram features based on phonology, morphology and syntax.
We conducted our experiments over 11 datasets from 5 languages i.e., English, Dutch, Russian, Spanish and Romanian, from six countries (US, Belgium, India, Russia, Mexico and Romania)
arXiv Detail & Related papers (2021-05-26T13:09:47Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.