Robust Networked Federated Learning for Localization
- URL: http://arxiv.org/abs/2308.16737v2
- Date: Fri, 1 Sep 2023 07:30:02 GMT
- Title: Robust Networked Federated Learning for Localization
- Authors: Reza Mirzaeifard, Naveen K. D. Venkategowda, Stefan Werner
- Abstract summary: This paper addresses the problem of approximation, which is non-smooth in a federated setting where the data is distributed across a multitude of devices.
We propose a method that adopts an $L_$-norm that a robust formulation within a distributed subgradient framework, explicitly designed to handle these obstacles.
- Score: 7.332862402432447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of localization, which is inherently
non-convex and non-smooth in a federated setting where the data is distributed
across a multitude of devices. Due to the decentralized nature of federated
environments, distributed learning becomes essential for scalability and
adaptability. Moreover, these environments are often plagued by outlier data,
which presents substantial challenges to conventional methods, particularly in
maintaining estimation accuracy and ensuring algorithm convergence. To mitigate
these challenges, we propose a method that adopts an $L_1$-norm robust
formulation within a distributed sub-gradient framework, explicitly designed to
handle these obstacles. Our approach addresses the problem in its original
form, without resorting to iterative simplifications or approximations,
resulting in enhanced computational efficiency and improved estimation
accuracy. We demonstrate that our method converges to a stationary point,
highlighting its effectiveness and reliability. Through numerical simulations,
we confirm the superior performance of our approach, notably in outlier-rich
environments, which surpasses existing state-of-the-art localization methods.
Related papers
- Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Distributionally Robust Learning with Stable Adversarial Training [34.74504615726101]
Machine learning algorithms with empirical risk minimization are vulnerable under distributional shifts.
We propose a novel Stable Adversarial Learning (SAL) algorithm that leverages heterogeneous data sources to construct a more practical uncertainty set.
arXiv Detail & Related papers (2021-06-30T03:05:45Z) - Rare event estimation using stochastic spectral embedding [0.0]
Estimating the probability of rare failure events is an essential step in the reliability assessment of engineering systems.
We propose a set of modifications that tailor the algorithm to efficiently solve rare event estimation problems.
arXiv Detail & Related papers (2021-06-09T16:10:33Z) - Scalable Bayesian Inverse Reinforcement Learning [93.27920030279586]
We introduce Approximate Variational Reward Imitation Learning (AVRIL)
Our method addresses the ill-posed nature of the inverse reinforcement learning problem.
Applying our method to real medical data alongside classic control simulations, we demonstrate Bayesian reward inference in environments beyond the scope of current methods.
arXiv Detail & Related papers (2021-02-12T12:32:02Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Stable Adversarial Learning under Distributional Shifts [46.98655899839784]
Machine learning algorithms with empirical risk minimization are vulnerable under distributional shifts.
We propose Stable Adversarial Learning (SAL) algorithm that leverages heterogeneous data sources to construct a more practical uncertainty set.
arXiv Detail & Related papers (2020-06-08T08:42:34Z) - A Graduated Filter Method for Large Scale Robust Estimation [32.08441889054456]
We introduce a novel solver for robust estimation that possesses a strong ability to escape poor local minima.
Our algorithm is built upon the graduated-of-the-art methods to solve problems having many poor local minima.
arXiv Detail & Related papers (2020-03-20T02:51:31Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.