A Graduated Filter Method for Large Scale Robust Estimation
- URL: http://arxiv.org/abs/2003.09080v1
- Date: Fri, 20 Mar 2020 02:51:31 GMT
- Title: A Graduated Filter Method for Large Scale Robust Estimation
- Authors: Huu Le and Christopher Zach
- Abstract summary: We introduce a novel solver for robust estimation that possesses a strong ability to escape poor local minima.
Our algorithm is built upon the graduated-of-the-art methods to solve problems having many poor local minima.
- Score: 32.08441889054456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the highly non-convex nature of large-scale robust parameter
estimation, avoiding poor local minima is challenging in real-world
applications where input data is contaminated by a large or unknown fraction of
outliers. In this paper, we introduce a novel solver for robust estimation that
possesses a strong ability to escape poor local minima. Our algorithm is built
upon the class of traditional graduated optimization techniques, which are
considered state-of-the-art local methods to solve problems having many poor
minima. The novelty of our work lies in the introduction of an adaptive kernel
(or residual) scaling scheme, which allows us to achieve faster convergence
rates. Like other existing methods that aim to return good local minima for
robust estimation tasks, our method relaxes the original robust problem but
adapts a filter framework from non-linear constrained optimization to
automatically choose the level of relaxation. Experimental results on real
large-scale datasets such as bundle adjustment instances demonstrate that our
proposed method achieves competitive results.
Related papers
- A constrained optimization approach to improve robustness of neural networks [1.2338729811609355]
We present a novel nonlinear programming-based approach to fine-tune pre-trained neural networks to improve robustness against adversarial attacks while maintaining accuracy on clean data.
arXiv Detail & Related papers (2024-09-18T18:37:14Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - A Particle-based Sparse Gaussian Process Optimizer [5.672919245950197]
We present a new swarm-swarm-based framework utilizing the underlying dynamical process of descent.
The biggest advantage of this approach is greater exploration around the current state before deciding descent descent.
arXiv Detail & Related papers (2022-11-26T09:06:15Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Gaining Outlier Resistance with Progressive Quantiles: Fast Algorithms
and Theoretical Studies [1.6457778420360534]
A framework of outlier-resistant estimation is introduced to robustify arbitrarily loss function.
A new technique is proposed to alleviate the requirement on starting point such that on regular datasets the number of data reestimations can be substantially reduced.
The obtained estimators, though not necessarily globally or even globally, enjoymax optimality in both low dimensions.
arXiv Detail & Related papers (2021-12-15T20:35:21Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Debiasing In-Sample Policy Performance for Small-Data, Large-Scale
Optimization [4.554894288663752]
We propose a novel estimator of the out-of-sample performance of a policy in data-driven optimization.
Unlike cross-validation, our approach avoids sacrificing data for a test set.
We prove our estimator performs well in the small-data, largescale regime.
arXiv Detail & Related papers (2021-07-26T19:00:51Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks.
We develop a communication-efficient distributed extragrad algorithm, LocalAdaSient, with an adaptive learning rate suitable for solving convex-concave minimax problem in the.
Server model.
We demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
arXiv Detail & Related papers (2021-06-18T09:42:05Z) - Escaping Poor Local Minima in Large Scale Robust Estimation [41.304283715031204]
We introduce two novel approaches for robust parameter estimation.
The first algorithm uses an adaptive kernel scaling strategy that enjoys a strong ability to escape poor minima.
The second algorithm combines a generalized Majorization Minimization framework with the half-quadratic lifting formulation to obtain a simple yet efficient solver.
arXiv Detail & Related papers (2021-02-22T11:58:29Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - High-Dimensional Robust Mean Estimation via Gradient Descent [73.61354272612752]
We show that the problem of robust mean estimation in the presence of a constant adversarial fraction can be solved by gradient descent.
Our work establishes an intriguing connection between the near non-lemma estimation and robust statistics.
arXiv Detail & Related papers (2020-05-04T10:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.