論文の概要: Irregular Traffic Time Series Forecasting Based on Asynchronous
Spatio-Temporal Graph Convolutional Network
- arxiv url: http://arxiv.org/abs/2308.16818v2
- Date: Fri, 1 Sep 2023 07:27:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-04 10:49:56.766219
- Title: Irregular Traffic Time Series Forecasting Based on Asynchronous
Spatio-Temporal Graph Convolutional Network
- Title(参考訳): 非同期時空間グラフ畳み込みネットワークによる不規則交通時系列予測
- Authors: Weijia Zhang, Le Zhang, Jindong Han, Hao Liu, Jingbo Zhou, Yu Mei, Hui
Xiong
- Abstract要約: 本研究では,道路の交通状態を予測するために,Asynchronous Spatio-tEmporal graph convolutional nEtwoRk (ASeer)を提案する。
不規則なトラフィック状態シーケンス内の時間依存性をキャプチャするために、各レーンの連続時間を埋め込むために学習可能なパーソナライズされた時間符号化を考案する。
2つの実世界のデータセットに対する大規模な実験は、6つのメトリクスでASeerの有効性を示している。
- 参考スコア(独自算出の注目度): 35.79257816518065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate traffic forecasting at intersections governed by intelligent traffic
signals is critical for the advancement of an effective intelligent traffic
signal control system. However, due to the irregular traffic time series
produced by intelligent intersections, the traffic forecasting task becomes
much more intractable and imposes three major new challenges: 1) asynchronous
spatial dependency, 2) irregular temporal dependency among traffic data, and 3)
variable-length sequence to be predicted, which severely impede the performance
of current traffic forecasting methods. To this end, we propose an Asynchronous
Spatio-tEmporal graph convolutional nEtwoRk (ASeer) to predict the traffic
states of the lanes entering intelligent intersections in a future time window.
Specifically, by linking lanes via a traffic diffusion graph, we first propose
an Asynchronous Graph Diffusion Network to model the asynchronous spatial
dependency between the time-misaligned traffic state measurements of lanes.
After that, to capture the temporal dependency within irregular traffic state
sequence, a learnable personalized time encoding is devised to embed the
continuous time for each lane. Then we propose a Transformable Time-aware
Convolution Network that learns meta-filters to derive time-aware convolution
filters with transformable filter sizes for efficient temporal convolution on
the irregular sequence. Furthermore, a Semi-Autoregressive Prediction Network
consisting of a state evolution unit and a semiautoregressive predictor is
designed to effectively and efficiently predict variable-length traffic state
sequences. Extensive experiments on two real-world datasets demonstrate the
effectiveness of ASeer in six metrics.
- Abstract(参考訳): 知的交通信号が支配する交差点における正確な交通予測は,効果的な知的交通信号制御システムの発展に不可欠である。
しかし、知的交差点が生み出す不規則な交通時系列により、交通予測タスクはずっと難解になり、3つの大きな課題が課せられる。
1)非同期空間依存性
2)交通データ間の不規則な時間依存、及び
3) 予測すべき可変長シーケンスは,現在のトラヒック予測手法の性能を著しく損なう。
この目的のために、将来の時間窓にインテリジェントな交差点に入るレーンの交通状態を予測するために、非同期時空間グラフ畳み込み nEtwoRk (ASeer) を提案する。
具体的には、交通拡散グラフを介してレーンをリンクすることにより、まず非同期グラフ拡散ネットワークを提案し、レーンの時間的ミスアラインな交通状態測定間の非同期空間依存性をモデル化する。
その後、不規則なトラフィック状態シーケンス内の時間依存性をキャプチャするために、各レーンの連続時間を埋め込むために学習可能なパーソナライズされた時間符号化を考案する。
次に,変換可能なフィルタサイズを有する時間対応畳み込みフィルタを導出するために,メタフィルタを学習する変換可能な時間対応畳み込みネットワークを提案する。
さらに、状態進化単位と半自己回帰予測器からなる半自己回帰予測ネットワークは、可変長のトラフィック状態列を効果的に効率的に予測するように設計されている。
2つの実世界のデータセットに対する大規模な実験は、6つのメトリクスでASeerの有効性を示している。
関連論文リスト
- ICST-DNET: An Interpretable Causal Spatio-Temporal Diffusion Network for Traffic Speed Prediction [47.17205142864036]
ICST-DENTはSpatio-Temporal Causality Learning (STCL)、Causal Graph Generation (CGG)、Speed Fluctuation Pattern Recognition (SFPR)の3つの部分から構成されている。
ICST-DENTは、より高い予測精度、因果関係を説明する能力、異なるシナリオへの適応性によって証明されているように、既存のすべてのベースラインを上回ることができる。
論文 参考訳(メタデータ) (2024-04-22T03:35:19Z) - Transport-Hub-Aware Spatial-Temporal Adaptive Graph Transformer for
Traffic Flow Prediction [10.722455633629883]
本稿では交通流予測のためのトランスポート・ハブ対応時空間適応型グラフ変換器を提案する。
具体的には、動的空間依存を捉えるために、まず新しい空間自己認識モジュールを設計する。
また、トラフィックフローデータ中の動的時間パターンを検出するために、時間的自己アテンションモジュールを用いる。
論文 参考訳(メタデータ) (2023-10-12T13:44:35Z) - Multi-Scale Spatial-Temporal Recurrent Networks for Traffic Flow
Prediction [13.426775574655135]
交通流予測のためのマルチスケール時空間リカレントネットワーク(MSSTRN)を提案する。
本研究では,適応的な位置グラフの畳み込みを自己認識機構に統合し,空間的時間的依存関係の同時捕捉を実現する空間的時間的同期的注意機構を提案する。
本モデルは,全20基準法と比較して,非自明なマージンで最高の予測精度を実現する。
論文 参考訳(メタデータ) (2023-10-12T08:52:36Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
交通データは非常に非線形であり、道路ノード間の複雑な空間的相関を持つ。
既存のアプローチでは、固定された道路ネットワークトポロジマップと独立した時系列モジュールを使用して、時空間相関をキャプチャする。
本稿では,グラフ注意ネットワーク(GAT)を介して交通ネットワークの空間依存性を捕捉し,交通データの因果関係を解析する新しい予測モデルを提案する。
論文 参考訳(メタデータ) (2022-03-21T06:38:34Z) - PSTN: Periodic Spatial-temporal Deep Neural Network for Traffic
Condition Prediction [8.255993195520306]
本稿では,交通条件の予測性能を改善するために,周期的深部ニューラルネットワーク(PSTN)を3つのモジュールで提案する。
まず、歴史交通情報を折り畳み、グラフ畳み込みネットワークと時間畳み込みネットワークからなるモジュールに供給する。
論文 参考訳(メタデータ) (2021-08-05T07:42:43Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - PCNN: Deep Convolutional Networks for Short-term Traffic Congestion
Prediction [16.010576606023417]
そこで我々は,PCNNという新しい手法を提案し,短期交通渋滞予測のための周期的トラフィックデータをモデル化する。
PCNNには時系列の折り畳みと多粒度学習という2つの重要な手順がある。
実世界の都市交通データセットの実験結果から,二次元行列への時系列データの折り畳みが有効であることが確認された。
論文 参考訳(メタデータ) (2020-03-16T05:36:58Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。