Facing Unknown: Open-World Encrypted Traffic Classification Based on Contrastive Pre-Training
- URL: http://arxiv.org/abs/2308.16861v1
- Date: Thu, 31 Aug 2023 17:04:20 GMT
- Title: Facing Unknown: Open-World Encrypted Traffic Classification Based on Contrastive Pre-Training
- Authors: Xiang Li, Beibei Feng, Tianning Zang, Shuyuan Zhao, Jingrun Ma,
- Abstract summary: We propose a novel Open-World Contrastive Pre-training (OWCP) framework for this.
OWCP performs contrastive pre-training to obtain a robust feature representation.
We conduct comprehensive ablation studies and sensitivity analyses to validate each integral component of OWCP.
- Score: 5.318006462723139
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional Encrypted Traffic Classification (ETC) methods face a significant challenge in classifying large volumes of encrypted traffic in the open-world assumption, i.e., simultaneously classifying the known applications and detecting unknown applications. We propose a novel Open-World Contrastive Pre-training (OWCP) framework for this. OWCP performs contrastive pre-training to obtain a robust feature representation. Based on this, we determine the spherical mapping space to find the marginal flows for each known class, which are used to train GANs to synthesize new flows similar to the known parts but do not belong to any class. These synthetic flows are assigned to Softmax's unknown node to modify the classifier, effectively enhancing sensitivity towards known flows and significantly suppressing unknown ones. Extensive experiments on three datasets show that OWCP significantly outperforms existing ETC and generic open-world classification methods. Furthermore, we conduct comprehensive ablation studies and sensitivity analyses to validate each integral component of OWCP.
Related papers
- OSAD: Open-Set Aircraft Detection in SAR Images [1.1060425537315088]
Open-set detection aims to enable detectors trained on a closed set to detect all known objects and identify unknown objects in open-set environments.
To address these challenges, a novel open-set aircraft detector for SAR images is proposed, named Open-Set Aircraft Detection (OSAD)
It is equipped with three dedicated components: global context modeling (GCM), location quality-driven pseudo labeling generation (LPG), and prototype contrastive learning (PCL)
arXiv Detail & Related papers (2024-11-03T15:06:14Z) - Unknown Prompt, the only Lacuna: Unveiling CLIP's Potential for Open Domain Generalization [12.126495847808803]
We introduce ODG-CLIP, harnessing the semantic prowess of the vision-language model, CLIP.
We conceptualize ODG as a multi-class classification challenge encompassing both known and novel categories.
We infuse images with class-discriminative knowledge derived from the prompt space to augment the fidelity of CLIP's visual embeddings.
arXiv Detail & Related papers (2024-03-31T15:03:31Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - LORD: Leveraging Open-Set Recognition with Unknown Data [10.200937444995944]
LORD is a framework to Leverage Open-set Recognition by exploiting unknown data.
We identify three model-agnostic training strategies that exploit background data and applied them to well-established classifiers.
arXiv Detail & Related papers (2023-08-24T06:12:41Z) - Global Knowledge Calibration for Fast Open-Vocabulary Segmentation [124.74256749281625]
We introduce a text diversification strategy that generates a set of synonyms for each training category.
We also employ a text-guided knowledge distillation method to preserve the generalizable knowledge of CLIP.
Our proposed model achieves robust generalization performance across various datasets.
arXiv Detail & Related papers (2023-03-16T09:51:41Z) - Learning Classifiers of Prototypes and Reciprocal Points for Universal
Domain Adaptation [79.62038105814658]
Universal Domain aims to transfer the knowledge between datasets by handling two shifts: domain-shift and categoryshift.
Main challenge is correctly distinguishing the unknown target samples while adapting the distribution of known class knowledge from source to target.
Most existing methods approach this problem by first training the target adapted known and then relying on the single threshold to distinguish unknown target samples.
arXiv Detail & Related papers (2022-12-16T09:01:57Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Few-Shot Specific Emitter Identification via Deep Metric Ensemble
Learning [26.581059299453663]
We propose a novel FS-SEI for aircraft identification via automatic dependent surveillance-broadcast (ADS-B) signals.
Specifically, the proposed method consists of feature embedding and classification.
Simulation results show that if the number of samples per category is more than 5, the average accuracy of our proposed method is higher than 98%.
arXiv Detail & Related papers (2022-07-14T01:09:22Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.